Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

被引:10
|
作者
Szutkowska, M. [1 ]
Boniecki, M. [2 ]
Cygan, S. [1 ]
Kalinka, A. [1 ]
Grilli, M. L. [3 ]
Balos, S. [4 ]
机构
[1] Inst Adv Mfg Technol, Krakow, Poland
[2] Inst Elect Mat Technol, Warsaw, Poland
[3] ENEA Energy Technol Dept, Rome, Italy
[4] Fac Tech Sci, Novi Sad, Serbia
关键词
Hardmetals; sintering HIP; fracture toughness; Palmqvist cracks; titanium carbide;
D O I
10.1088/1757-899X/329/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The addition of various amounts of TiC0.9 phase in the range from 5wt.% to 20wt.% substituting WC phase was applied in WC-Co hardmetals with 9.5 wt.% bonding cobalt phase. The hardmetals were consolidated using Hot Isostatic Pressing (HIP) method at temperature of 1573K and pressure of 1500 atm. The plain strain fracture toughness has been determined from 3PB test on a pre-cracking single edge notched beam (SENB) specimen. The indentation fracture toughness with Vickers cracks for comparison was also measured, which changed from 12 to 9.0 MPa.m(1/2). The amount of the TiC0.9 phase affected the mechanical and physical properties: Vickers hardness from 12.5 to 14.0 GPa, Young's modulus from 550 to 460 GPa, density from 13.1 to 9.6 g/cm(3), friction coefficient from 0.24 to 0.45, fracture toughness from 16.8 to 11.0 MPa.m(1/2). Scanning electron microscopy (SEM), X-ray and electron diffraction phase analysis were used to examine the WC-Co hardmetal with addition of the TiC0.9 phase. For comparison, physical and mechanical properties of the WC-Co hardmetals before modification were tested.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FRACTURE TOPOGRAPHY OF WC-CO HARDMETALS
    LEA, C
    ROEBUCK, B
    METAL SCIENCE, 1981, 15 (06): : 262 - 266
  • [2] On the contiguity of carbide phase in WC-Co hardmetals
    Golovchan, VT
    Litoshenko, NV
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2003, 21 (5-6): : 241 - 244
  • [3] Sintering behaviour and properties of WC-Co hardmetals in relation to the WC powder properties
    Gille, G
    Leitner, G
    Roebuck, B
    ADVANCES IN HARD MATERIALS PRODUCTION, 1996, : 195 - 210
  • [4] Nanoindentation of WC-Co hardmetals
    Duszova, Annamaria
    Halgas, Radoslav
    Bl'anda, Marek
    Hvizdos, Pavol
    Lofaj, Frantisek
    Dusza, Jan
    Morgiel, Jerzy
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (12) : 2227 - 2232
  • [5] Grinding of WC-Co hardmetals
    Hegeman, JBJW
    De Hosson, JTM
    de With, G
    WEAR, 2001, 248 (1-2) : 187 - 196
  • [6] NbC as grain growth inhibitor and carbide in WC-Co hardmetals
    Huang, S. G.
    Liu, R. L.
    Li, L.
    Van der Biest, O.
    Vleugels, J.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (05): : 389 - 395
  • [7] Fracture toughness measurement of WC-Co hardmetals by indentation method
    Szutkowska, M
    JOURNAL OF ADVANCED MATERIALS, 1999, 31 (03): : 3 - 7
  • [8] Double-layer coatings on WC-Co hardmetals containing diamond and titanium carbide/nitride
    Köpf, A
    Haubner, R
    Lux, B
    DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) : 494 - 501
  • [9] DEFORMATION AND FRACTURE PROCESSES AND THE PHYSICAL METALLURGY OF WC-CO HARDMETALS
    ROEBUCK, B
    ALMOND, EA
    INTERNATIONAL MATERIALS REVIEWS, 1988, 33 (02) : 90 - 110
  • [10] Ultrasonic evaluation of WC-Co hardmetals
    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
    Wuhan Ligong Daxue Xuebao, 2007, 10 (153-157):