The hard Lefschetz duality for locally conformally almost Kähler manifolds

被引:0
|
作者
Kanda, Shuho [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro, Tokyo 1538914, Japan
关键词
KAHLER;
D O I
10.1016/j.difgeo.2025.102239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the hard Lefschetz duality for locally conformally almost K & auml;hler manifolds. This is a generalization of that for almost K & auml;hler manifolds studied by Cirici and Wilson. We generalize the K & auml;hler identities to prove the duality. Based on the result, we introduce the hard Lefschetz condition for locally conformally symplectic manifolds. As examples, we give solvmanifolds which do not satisfy the hard Lefschetz condition. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Moment Map for Twisted-Hamiltonian Vector Fields on Locally Conformally Kähler Manifolds
    Angella, Daniele
    Calamai, Simone
    Pediconi, Francesco
    Spotti, Cristiano
    TRANSFORMATION GROUPS, 2023,
  • [22] Coverings of locally conformally Kähler complex spaces
    Ovidiu Preda
    Miron Stanciu
    Mathematische Zeitschrift, 2021, 298 : 639 - 651
  • [23] Compact conformally Kähler Einstein-Weyl manifolds
    Włodzimierz Jelonek
    Annals of Global Analysis and Geometry, 2013, 43 : 19 - 29
  • [24] Locally conformal Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Mathematische Annalen, 2010, 348 : 25 - 33
  • [25] Locally homogeneous nearly Kähler manifolds
    V. Cortés
    J. J. Vásquez
    Annals of Global Analysis and Geometry, 2015, 48 : 269 - 294
  • [26] Self-similar Hessian and conformally Kähler manifolds
    Pavel Osipov
    Annals of Global Analysis and Geometry, 2022, 62 : 479 - 488
  • [27] Locally conformally Kähler spaces and proper open morphisms
    Preda, Ovidiu
    Stanciu, Miron
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 66 (01)
  • [28] Locally conformally Kähler structures on unimodular Lie groups
    A. Andrada
    M. Origlia
    Geometriae Dedicata, 2015, 179 : 197 - 216
  • [29] Compact indefinite almost Kähler Einstein manifolds
    Kouei Sekigawa
    Akira Yamada
    Geometriae Dedicata, 2008, 132 : 65 - 79
  • [30] Almost complex submanifolds of nearly Kähler manifolds
    Limiao Lin
    Luc Vrancken
    Anne Wijffels
    Archiv der Mathematik, 2020, 115 : 353 - 358