The hard Lefschetz duality for locally conformally almost Kähler manifolds

被引:0
|
作者
Kanda, Shuho [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro, Tokyo 1538914, Japan
关键词
KAHLER;
D O I
10.1016/j.difgeo.2025.102239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the hard Lefschetz duality for locally conformally almost K & auml;hler manifolds. This is a generalization of that for almost K & auml;hler manifolds studied by Cirici and Wilson. We generalize the K & auml;hler identities to prove the duality. Based on the result, we introduce the hard Lefschetz condition for locally conformally symplectic manifolds. As examples, we give solvmanifolds which do not satisfy the hard Lefschetz condition. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Complex points of minimal surfaces in almost Kähler manifolds
    Renyi Ma
    manuscripta mathematica, 1998, 95 (1) : 159 - 168
  • [42] The duality of conformally flat manifolds
    Liu, Huili
    Umehara, Masaaki
    Yamada, Kotaro
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (01): : 131 - 152
  • [43] Deformations of Almost-Kähler Metrics with Constant Scalar Curvature on Compact Kähler Manifolds
    Jongsu Kim
    Chanyoung Sung
    Annals of Global Analysis and Geometry, 2002, 22 : 49 - 73
  • [44] Locally conformally Kähler metrics on certain non-Kählerian surfaces
    Marco Brunella
    Mathematische Annalen, 2010, 346 : 629 - 639
  • [45] An integral invariant from the view point of locally conformally Kähler geometry
    Akito Futaki
    Kota Hattori
    Liviu Ornea
    Manuscripta Mathematica, 2013, 140 : 1 - 12
  • [46] Generalized Kähler structures on group manifolds and T-duality
    J. P. Ang
    Sibylle Driezen
    Martin Roček
    Alexander Sevrin
    Journal of High Energy Physics, 2018
  • [47] A Class of Locally Inhomogeneous Complete Quaternionic Kähler Manifolds
    Vicente Cortés
    Alejandro Gil-García
    Arpan Saha
    Communications in Mathematical Physics, 2023, 403 : 1611 - 1626
  • [48] Holomorphic Lefschetz Fixed Point Formula for Non-compact Khler Manifolds
    Boyong CHEN Yang LIU Department of Mathematics
    ChineseAnnalsofMathematics, 2008, (06) : 679 - 686
  • [49] Holomorphic Lefschetz fixed point formula for non-compact Kähler manifolds
    Boyong Chen
    Yang Liu
    Chinese Annals of Mathematics, Series B, 2008, 29
  • [50] Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection
    Andrea Cattaneo
    Antonella Nannicini
    Adriano Tomassini
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1815 - 1842