The hard Lefschetz duality for locally conformally almost Kähler manifolds

被引:0
|
作者
Kanda, Shuho [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro, Tokyo 1538914, Japan
关键词
KAHLER;
D O I
10.1016/j.difgeo.2025.102239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the hard Lefschetz duality for locally conformally almost K & auml;hler manifolds. This is a generalization of that for almost K & auml;hler manifolds studied by Cirici and Wilson. We generalize the K & auml;hler identities to prove the duality. Based on the result, we introduce the hard Lefschetz condition for locally conformally symplectic manifolds. As examples, we give solvmanifolds which do not satisfy the hard Lefschetz condition. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [31] New Class of Locally Conformal Kähler Manifolds
    Oubbiche Nour
    Beldjilali Gherici
    Bouzir Habib
    Delloum Adel
    Mediterranean Journal of Mathematics, 2023, 20
  • [32] The Geometry of Positive Locally Quaternion Kähler Manifolds
    Paolo Piccinni
    Annals of Global Analysis and Geometry, 1998, 16 : 255 - 272
  • [33] An Example of a Concircular Vector Field on a Locally Conformally Kähler Manifold
    V. F. Kirichenko
    O. E. Arsen’eva
    A. R. Rustanov
    Mathematical Notes, 2022, 111 : 544 - 548
  • [34] Morse-Novikov cohomology of locally conformally Kähler surfaces
    Alexandra Otiman
    Mathematische Zeitschrift, 2018, 289 : 605 - 628
  • [35] Correction to: Existence criteria for special locally conformally Kähler metrics
    Nicolina Istrati
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 355 - 355
  • [36] ON 4-DIMENSIONAL LOCALLY CONFORMALLY FLAT ALMOST KAHLER MANIFOLDS
    Krolikowski, Wieslaw
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 215 - 223
  • [37] A note on Kähler manifolds with almost nonnegative bisectional curvature
    Hong Huang
    Annals of Global Analysis and Geometry, 2009, 36 : 323 - 325
  • [38] Complex points of minimal surfaces in almost Kähler manifolds
    Ma R.
    manuscripta mathematica, 1998, 95 (2) : 159 - 168
  • [39] The duality of conformally flat manifolds
    Huili Liu
    Masaaki Umehara
    Kotaro Yamada
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 131 - 152
  • [40] Compatible Almost Complex Structures on Quaternion Kähler Manifolds
    D. V. Alekseevsky
    S. Marchiafava
    M. Pontecorvo
    Annals of Global Analysis and Geometry, 1998, 16 : 419 - 444