Locally homogeneous nearly Kähler manifolds

被引:0
|
作者
V. Cortés
J. J. Vásquez
机构
[1] Universität Hamburg,Department Mathematik und Zentrum für Mathematische Physik
[2] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
来源
关键词
Nearly Kähler manifolds; Locally homogeneous spaces; Einstein manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We construct locally homogeneous six-dimensional nearly Kähler manifolds as quotients of homogeneous nearly Kähler manifolds M by freely acting finite subgroups of Aut0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)$$\end{document}. We show that non-trivial such groups do only exists if M=S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^3\times S^3$$\end{document}. In that case, we classify all freely acting subgroups of Aut0(M)=SU(2)×SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)=\text {SU}(2) \times \text {SU}(2) \times \text {SU}(2)$$\end{document} of the form A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B$$\end{document}, where A⊂SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \text {SU}(2) \times \text {SU}(2)$$\end{document} and B⊂SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset \text {SU}(2)$$\end{document}.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 50 条
  • [1] Homogeneous nearly Kähler manifolds
    J. C. González Dávila
    F. Martín Cabrera
    Annals of Global Analysis and Geometry, 2012, 42 : 147 - 170
  • [2] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [3] Toric nearly Kähler manifolds
    Andrei Moroianu
    Paul-Andi Nagy
    Annals of Global Analysis and Geometry, 2019, 55 : 703 - 717
  • [4] Isospectral nearly Kähler manifolds
    J. J. Vásquez
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2018, 88 : 23 - 50
  • [5] Homogeneous Kähler and Hamiltonian manifolds
    Bruce Gilligan
    Christian Miebach
    Karl Oeljeklaus
    Mathematische Annalen, 2011, 349 : 889 - 901
  • [6] Locally homogeneous nearly Kahler manifolds
    Cortes, V.
    Vasquez, J. J.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (03) : 269 - 294
  • [7] Heterotic compactifications on nearly Kähler manifolds
    Olaf Lechtenfeld
    Christoph Nölle
    Alexander D. Popov
    Journal of High Energy Physics, 2010
  • [8] Pseudoholomorphic Curves on Nearly Kähler Manifolds
    Misha Verbitsky
    Communications in Mathematical Physics, 2013, 324 : 173 - 177
  • [9] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [10] Locally conformal Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Mathematische Annalen, 2010, 348 : 25 - 33