Locally homogeneous nearly Kähler manifolds

被引:0
|
作者
V. Cortés
J. J. Vásquez
机构
[1] Universität Hamburg,Department Mathematik und Zentrum für Mathematische Physik
[2] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
来源
关键词
Nearly Kähler manifolds; Locally homogeneous spaces; Einstein manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We construct locally homogeneous six-dimensional nearly Kähler manifolds as quotients of homogeneous nearly Kähler manifolds M by freely acting finite subgroups of Aut0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)$$\end{document}. We show that non-trivial such groups do only exists if M=S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^3\times S^3$$\end{document}. In that case, we classify all freely acting subgroups of Aut0(M)=SU(2)×SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)=\text {SU}(2) \times \text {SU}(2) \times \text {SU}(2)$$\end{document} of the form A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B$$\end{document}, where A⊂SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \text {SU}(2) \times \text {SU}(2)$$\end{document} and B⊂SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset \text {SU}(2)$$\end{document}.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 50 条
  • [31] Hopf surfaces in locally conformally Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Geometriae Dedicata, 2020, 207 : 219 - 226
  • [32] A note on tt*-bundles over compact nearly Kähler manifolds
    Lars Schaefer
    Geometriae Dedicata, 2007, 128 : 107 - 112
  • [33] On locally conformally Kähler metrics on Oeljeklaus–Toma manifolds
    Ştefan Deaconu
    Victor Vuletescu
    manuscripta mathematica, 2023, 171 : 643 - 647
  • [34] A note on Euler number of locally conformally Kähler manifolds
    Teng Huang
    Mathematische Zeitschrift, 2020, 296 : 1725 - 1733
  • [35] A Class of Locally Inhomogeneous Complete Quaternionic Kähler Manifolds
    Vicente Cortés
    Alejandro Gil-García
    Arpan Saha
    Communications in Mathematical Physics, 2023, 403 : 1611 - 1626
  • [36] A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds
    Yihong Hao
    An Wang
    Liyou Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [37] Quasi-Yamabe and Yamabe Solitons on Hypersurfaces of Nearly Kähler Manifolds
    Chen, Bang-Yen
    Djoric, Milos B.
    Djoric, Mirjana
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [38] Six-Dimensional Nearly Kähler Manifolds of Cohomogeneity One (II)
    Fabio Podestà
    Andrea Spiro
    Communications in Mathematical Physics, 2012, 312 : 477 - 500
  • [39] CLAIRAUT POINTWISE SLANT RIEMANNIAN SUBMERSION FROM NEARLY K?HLER MANIFOLDS
    Shanker, Gauree
    Yadav, Ankit
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (01): : 109 - 122
  • [40] Conical Ricci-flat nearly para-Kähler manifolds
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2014, 45 : 11 - 24