Locally homogeneous nearly Kähler manifolds

被引:0
|
作者
V. Cortés
J. J. Vásquez
机构
[1] Universität Hamburg,Department Mathematik und Zentrum für Mathematische Physik
[2] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
来源
关键词
Nearly Kähler manifolds; Locally homogeneous spaces; Einstein manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We construct locally homogeneous six-dimensional nearly Kähler manifolds as quotients of homogeneous nearly Kähler manifolds M by freely acting finite subgroups of Aut0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)$$\end{document}. We show that non-trivial such groups do only exists if M=S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^3\times S^3$$\end{document}. In that case, we classify all freely acting subgroups of Aut0(M)=SU(2)×SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)=\text {SU}(2) \times \text {SU}(2) \times \text {SU}(2)$$\end{document} of the form A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B$$\end{document}, where A⊂SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \text {SU}(2) \times \text {SU}(2)$$\end{document} and B⊂SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset \text {SU}(2)$$\end{document}.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 50 条
  • [21] New Class of Locally Conformal Kähler Manifolds
    Oubbiche Nour
    Beldjilali Gherici
    Bouzir Habib
    Delloum Adel
    Mediterranean Journal of Mathematics, 2023, 20
  • [22] Isometric immersions of locally conformally Kähler manifolds
    Daniele Angella
    Michela Zedda
    Annals of Global Analysis and Geometry, 2019, 56 : 37 - 55
  • [23] Nearly Kähler 6-Manifolds with Reduced Holonomy
    Florin Belgun
    Andrei Moroianu
    Annals of Global Analysis and Geometry, 2001, 19 : 307 - 319
  • [24] Decomposition and minimality of lagrangian submanifolds in nearly Kähler manifolds
    Lars Schäfer
    Knut Smoczyk
    Annals of Global Analysis and Geometry, 2010, 37 : 221 - 240
  • [25] Holomorphic submersions of locally conformally Kähler manifolds
    Liviu Ornea
    Maurizio Parton
    Victor Vuletescu
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1345 - 1351
  • [26] Coisotropic actions on compact homogeneous Kähler manifolds
    Fabio Podestà
    Gudlaugur Thorbergsson
    Mathematische Zeitschrift, 2003, 243 : 471 - 490
  • [27] On the linear stability of nearly Kähler 6-manifolds
    Uwe Semmelmann
    Changliang Wang
    M. Y.-K. Wang
    Annals of Global Analysis and Geometry, 2020, 57 : 15 - 22
  • [28] On the geometry of conharmonic curvature tensor for nearly Kähler manifolds
    Kirichenko V.F.
    Shihab A.A.
    Journal of Mathematical Sciences, 2011, 177 (5) : 675 - 683
  • [29] The Geometry of Positive Locally Quaternion Kähler Manifolds
    Paolo Piccinni
    Annals of Global Analysis and Geometry, 1998, 16 : 255 - 272
  • [30] Compact complex manifolds bimeromorphic to locally conformally Kähler manifolds
    Hirokazu Shimobe
    Geometriae Dedicata, 2018, 197 : 49 - 60