Locally homogeneous nearly Kähler manifolds

被引:0
|
作者
V. Cortés
J. J. Vásquez
机构
[1] Universität Hamburg,Department Mathematik und Zentrum für Mathematische Physik
[2] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
来源
关键词
Nearly Kähler manifolds; Locally homogeneous spaces; Einstein manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We construct locally homogeneous six-dimensional nearly Kähler manifolds as quotients of homogeneous nearly Kähler manifolds M by freely acting finite subgroups of Aut0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)$$\end{document}. We show that non-trivial such groups do only exists if M=S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^3\times S^3$$\end{document}. In that case, we classify all freely acting subgroups of Aut0(M)=SU(2)×SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)=\text {SU}(2) \times \text {SU}(2) \times \text {SU}(2)$$\end{document} of the form A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B$$\end{document}, where A⊂SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \text {SU}(2) \times \text {SU}(2)$$\end{document} and B⊂SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset \text {SU}(2)$$\end{document}.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 50 条
  • [41] Locally conformally Kähler manifolds admitting a holomorphic conformal flow
    Liviu Ornea
    Misha Verbitsky
    Mathematische Zeitschrift, 2013, 273 : 605 - 611
  • [42] Correction to: A note on Euler number of locally conformally Kähler manifolds
    Teng Huang
    Mathematische Zeitschrift, 2021, 299 : 2561 - 2561
  • [43] Multi-moment maps on nearly Kähler six-manifolds
    Giovanni Russo
    Geometriae Dedicata, 2021, 213 : 57 - 81
  • [44] Tight Lagrangian homology spheres in compact homogeneous Kähler manifolds
    Claudio Gorodski
    Fabio Podestà
    Israel Journal of Mathematics, 2015, 206 : 413 - 429
  • [45] Quasi-Yamabe and Yamabe Solitons on Hypersurfaces of Nearly Kähler Manifolds
    Bang-Yen Chen
    Miloš B. Djorić
    Mirjana Djorić
    Mediterranean Journal of Mathematics, 2024, 21
  • [46] Homogeneous almost-Kähler manifolds and the Chern–Einstein equation
    Dmitri V. Alekseevsky
    Fabio Podestà
    Mathematische Zeitschrift, 2020, 296 : 831 - 846
  • [47] A Classification of Compact Cohomogeneity One Locally Conformal Kähler Manifolds
    Guan, Daniel
    MATHEMATICS, 2024, 12 (11)
  • [48] Balanced Metrics and Gauduchon Cone of Locally Conformally Kähler Manifolds
    Ornea, Liviu
    Verbitsky, Misha
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (03)
  • [49] A note on almost Kähler, nearly Kähler submersions
    Falcitelli M.
    Pastore A.M.
    Journal of Geometry, 2000, 69 (1-2) : 79 - 87
  • [50] Non-linear Hopf Manifolds are Locally Conformally Kähler
    Liviu Ornea
    Misha Verbitsky
    The Journal of Geometric Analysis, 2023, 33