A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

被引:0
|
作者
Aljaidi, Mohammad [1 ]
Agrawal, Sunilkumar P. [2 ]
Parmar, Anil [3 ]
Jangir, Pradeep [4 ,5 ,12 ]
Arpita, Bhargavi Indrajit
Trivedi, Bhargavi Indrajit [9 ]
Gulothungan, G. [10 ]
Jangid, Reena [6 ,7 ,8 ]
Alkoradees, Ali Fayez [11 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[3] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[4] Univ Ctr Res & Dev, Chandigarh Univ, Mohali 140413, India
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[6] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[7] Graphic Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[9] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
[10] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[11] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[12] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
关键词
PEMFC; Parameter optimization; Hybrid Optimization Algorithm; Snow Ablation Optimized (SAO); Particle Swarm Optimization (PSO); ELECTRICAL CHARACTERIZATION; MODEL;
D O I
10.1007/s11581-025-06200-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration-exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Revolutionizing proton exchange membrane fuel cell modeling through hybrid aquila optimizer and arithmetic algorithm optimization
    Singla, Manish Kumar
    Ali, S. A. Muhammed
    Kumar, Ramesh
    Jangir, Pradeep
    Khishe, Mohammad
    Gulothungan, G.
    Mahmoud, Haitham A.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [42] Multi-strategy improved snow ablation optimizer: a case study of optimization of kernel extreme learning machine for flood prediction
    Cui, Lele
    Hu, Gang
    Zhu, Yaolin
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [43] Hierarchical multi-objective optimization of proton exchange membrane fuel cell with parameter uncertainty
    Wang, Yunlong
    Ye, Cunliang
    Wang, Yongfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [44] New hybrid model of proton exchange membrane fuel cell
    Rui-min Wang
    Guang-yi Cao
    Xin-jian Zhu
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 741 - 747
  • [46] New hybrid model of proton exchange membrane fuel cell
    Wang Rui-min
    Cao Guang-yi
    Zhu Xin-jian
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (05): : 741 - 747
  • [47] Proton exchange membrane fuel cell hybrid modeling research
    College of Electromechanical Engineering, Henan University of Science and Technology, Luoyang 471003, China
    不详
    Xitong Fangzhen Xuebao, 2007, 24 (5617-5619+5623):
  • [48] Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem
    Deng, Wu
    Zhang, Lirong
    Zhou, Xiangbing
    Zhou, Yongquan
    Sun, Yuzhu
    Zhu, Weihong
    Chen, Huayue
    Deng, Wuquan
    Chen, Huiling
    Zhao, Huimin
    INFORMATION SCIENCES, 2022, 612 : 576 - 593
  • [49] Parameter Matching Design of Proton Exchange Membrane Fuel Cell System
    School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo
    255000, China
    IAENG Int. J. Appl. Math., 1992, 1
  • [50] Simultaneously Parameter Identification and Measurement-Noise Covariance estimation of a Proton Exchange Membrane Fuel Cell
    Ghaderi, Razieh
    Daeichian, Ndabolghasem
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION AND AUTOMATION (ICCIA), 2019, : 343 - 347