A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

被引:0
|
作者
Aljaidi, Mohammad [1 ]
Agrawal, Sunilkumar P. [2 ]
Parmar, Anil [3 ]
Jangir, Pradeep [4 ,5 ,12 ]
Arpita, Bhargavi Indrajit
Trivedi, Bhargavi Indrajit [9 ]
Gulothungan, G. [10 ]
Jangid, Reena [6 ,7 ,8 ]
Alkoradees, Ali Fayez [11 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[3] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[4] Univ Ctr Res & Dev, Chandigarh Univ, Mohali 140413, India
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[6] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[7] Graphic Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[9] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
[10] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[11] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[12] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
关键词
PEMFC; Parameter optimization; Hybrid Optimization Algorithm; Snow Ablation Optimized (SAO); Particle Swarm Optimization (PSO); ELECTRICAL CHARACTERIZATION; MODEL;
D O I
10.1007/s11581-025-06200-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration-exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Parameter sensitivity analysis of proton exchange membrane fuel cell
    Xia G.
    Zhang X.
    Ma D.
    Ding R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (06): : 493 - 499
  • [32] An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Chang, Victor
    ENERGIES, 2021, 14 (21)
  • [33] Electrochemical parameter estimation in operating proton exchange membrane fuel cells
    Rubio, M. A.
    Urquia, A.
    Kuhn, R.
    Dormido, S.
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 118 - 125
  • [34] A multi-strategy particle swarm optimization algorithm and its application on hybrid magnetic levitation
    Wang, Qingyan
    Ma, Hongzhong
    Cao, Shengrang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2014, 34 (30): : 5416 - 5424
  • [35] Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient
    Abdi, Hamid
    Ait Messaoudene, Noureddine
    Kolsi, Lioua
    Naceur, Mohamed Wahib
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (05) : 1749 - 1759
  • [36] Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient
    Hamid Abdi
    Noureddine Ait Messaoudene
    Lioua Kolsi
    Mohamed Wahib Naceur
    Journal of Thermal Analysis and Calorimetry, 2021, 144 : 1749 - 1759
  • [37] Comparison of Some Parameter Estimation Techniques Applied to Proton Exchange Membrane Fuel Cell Models
    Havasi, Agnes
    Horvath, Robert
    Szabo, Tamas
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2013, 10 (05):
  • [38] A two stage differential evolution algorithm for parameter estimation of proton exchange membrane fuel cell
    Aljaidi, Mohammad
    Agrawal, Sunilkumar P.
    Jangir, Pradeep
    Pandya, Sundaram B.
    Parmar, Anil
    Arpita
    Alkoradees, Ali Fayez
    Trivedi, Bhargavi Indrajit
    Khishe, Mohammad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [39] PARAMETER ESTIMATION OF PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM USING SLIDING MODE OBSERVER
    Kazmi, Ijaz Hussain
    Bhatti, Aamer Iqbal
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (7B): : 5137 - 5148
  • [40] A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell
    Mitra, Uliya
    Arya, Anoop
    Gupta, Sushma
    FUEL, 2023, 335