A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

被引:0
|
作者
Aljaidi, Mohammad [1 ]
Agrawal, Sunilkumar P. [2 ]
Parmar, Anil [3 ]
Jangir, Pradeep [4 ,5 ,12 ]
Arpita, Bhargavi Indrajit
Trivedi, Bhargavi Indrajit [9 ]
Gulothungan, G. [10 ]
Jangid, Reena [6 ,7 ,8 ]
Alkoradees, Ali Fayez [11 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[3] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[4] Univ Ctr Res & Dev, Chandigarh Univ, Mohali 140413, India
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[6] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[7] Graphic Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[9] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
[10] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[11] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[12] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
关键词
PEMFC; Parameter optimization; Hybrid Optimization Algorithm; Snow Ablation Optimized (SAO); Particle Swarm Optimization (PSO); ELECTRICAL CHARACTERIZATION; MODEL;
D O I
10.1007/s11581-025-06200-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration-exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling
    Priya, K.
    Sathishkumar, K.
    Rajasekar, N.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 93 : 121 - 144
  • [22] Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell
    Rezk, Hegazy
    Olabi, A. G.
    Ferahtia, Seydali
    Sayed, Enas Taha
    ENERGY, 2022, 255
  • [23] Parameter Estimation for a Proton Exchange Membrane Fuel Cell Model Using GRG Technique
    Geem, Z. W.
    Noh, J. -S.
    FUEL CELLS, 2016, 16 (05) : 640 - 645
  • [24] Proton exchange membrane fuel cell modeling based on adaptive focusing particle swarm optimization
    Li Qi
    Chen Weirong
    Jia Junbo
    Thean, Cham Yew
    Han Ming
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2009, 1 (01)
  • [25] Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network
    Hu, Peng
    Cao, Guang-Yi
    Zhu, Xin-Jian
    Li, Jun
    SIMULATION MODELLING PRACTICE AND THEORY, 2010, 18 (05) : 574 - 588
  • [26] MISAO: Ultra-Short-Term Photovoltaic Power Forecasting with Multi-Strategy Improved Snow Ablation Optimizer
    Zhang, Xu
    Ye, Jun
    Ma, Shenbing
    Gao, Lintao
    Huang, Hui
    Xie, Qiman
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [27] MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications
    Xiao, Yaning
    Cui, Hao
    Hussien, Abdelazim G.
    Hashim, Fatma A.
    ADVANCED ENGINEERING INFORMATICS, 2024, 61
  • [28] A modified multi-group DNA genetic algorithm for parameter estimation of proton exchange membrane fuel cell model
    Lv, Huizhen
    Zhang, Duan
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 219 - 224
  • [29] Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles
    Hu, Zunyan
    Li, Jianqiu
    Xu, Liangfei
    Song, Ziyou
    Fang, Chuan
    Ouyang, Minggao
    Dou, Guowei
    Kou, Gaihong
    ENERGY CONVERSION AND MANAGEMENT, 2016, 129 : 108 - 121
  • [30] Modelling and Parameter Observation for Proton Exchange Membrane Fuel Cell
    Nassif, Younane
    Hamdan, Hani
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING DESE 2015, 2015, : 270 - 275