A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

被引:0
|
作者
Aljaidi, Mohammad [1 ]
Agrawal, Sunilkumar P. [2 ]
Parmar, Anil [3 ]
Jangir, Pradeep [4 ,5 ,12 ]
Arpita, Bhargavi Indrajit
Trivedi, Bhargavi Indrajit [9 ]
Gulothungan, G. [10 ]
Jangid, Reena [6 ,7 ,8 ]
Alkoradees, Ali Fayez [11 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[3] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[4] Univ Ctr Res & Dev, Chandigarh Univ, Mohali 140413, India
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[6] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[7] Graphic Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[9] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
[10] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[11] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[12] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
关键词
PEMFC; Parameter optimization; Hybrid Optimization Algorithm; Snow Ablation Optimized (SAO); Particle Swarm Optimization (PSO); ELECTRICAL CHARACTERIZATION; MODEL;
D O I
10.1007/s11581-025-06200-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration-exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Optimal parameter identification for the proton exchange membrane fuel cell using Satin Bowerbird optimizer
    Duan, Baorong
    Cao, Qiang
    Afshar, Nima
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (14) : 8623 - 8632
  • [12] MISAO: A Multi-Strategy Improved Snow Ablation Optimizer for Unmanned Aerial Vehicle Path Planning
    Zhou, Cuiping
    Li, Shaobo
    Xie, Cankun
    Yuan, Panliang
    Long, Xiangfu
    MATHEMATICS, 2024, 12 (18)
  • [13] Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm
    Zhang, Bo
    Wang, Rongjie
    Jiang, Desong
    Wang, Yichun
    Lin, Anhui
    Wang, Jianfeng
    Ruan, Bingcong
    ENERGY, 2023, 283
  • [14] A parameter optimized model of a Proton Exchange Membrane fuel cell including temperature effects
    Outeiro, M. T.
    Chibante, R.
    Carvalho, A. S.
    de Almeida, A. T.
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 952 - 960
  • [15] Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell (vol 8, pg 10776, 2022)
    Syah, Rahmad
    Guerrero, John William Grimaldo
    Poltarykhin, Andrey Leonidovich
    Suksatan, Wanich
    Aravindhan, Surendar
    Bokov, Dmitry O.
    Abdelbasset, Walid Kamal
    Al-Janabi, Samaher
    Alkaim, Ayad F.
    Tumanov, Dmitriy Yu.
    ENERGY REPORTS, 2023, 9
  • [16] Optimal parameter estimation of proton exchange membrane fuel cell using improved red fox optimizer for sustainable energy management
    Deepanraj, B.
    Gugulothu, S. K.
    Ramaraj, R.
    Arthi, M.
    Saravanan, R.
    JOURNAL OF CLEANER PRODUCTION, 2022, 369
  • [17] Parameter Estimation of Proton Exchange Membrane Fuel Cells Using Chaotic Newton-Raphson-Based Optimizer
    AbouOmar, Mahmoud S.
    Eltayeb, Ahmed
    Al-Quraishi, Maged S.
    El Ferik, Sami
    RESULTS IN ENGINEERING, 2024, 24
  • [18] Optimal Parameter Estimation of Proton Exchange Membrane Fuel Cells
    Abdullah, A. M.
    Rezk, Hegazy
    Hadad, A.
    Hassan, Mohamed K.
    Mohamed, A. F.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02): : 619 - 631
  • [19] Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC)
    任远
    曹广益
    朱新坚
    Journal of Zhejiang University Science A(Science in Engineering), 2006, (03) : 458 - 462
  • [20] Particle swarm optimization based predictive control of proton exchange membrane fuel cell (PEMFC)
    Ren Y.
    Cao G.-Y.
    Zhu X.-J.
    Journal of Zhejiang University: Science, 2006, 7 (03): : 458 - 462