A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

被引:0
|
作者
Aljaidi, Mohammad [1 ]
Agrawal, Sunilkumar P. [2 ]
Parmar, Anil [3 ]
Jangir, Pradeep [4 ,5 ,12 ]
Arpita, Bhargavi Indrajit
Trivedi, Bhargavi Indrajit [9 ]
Gulothungan, G. [10 ]
Jangid, Reena [6 ,7 ,8 ]
Alkoradees, Ali Fayez [11 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[3] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[4] Univ Ctr Res & Dev, Chandigarh Univ, Mohali 140413, India
[5] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[6] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[7] Graphic Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[9] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
[10] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[11] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[12] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
关键词
PEMFC; Parameter optimization; Hybrid Optimization Algorithm; Snow Ablation Optimized (SAO); Particle Swarm Optimization (PSO); ELECTRICAL CHARACTERIZATION; MODEL;
D O I
10.1007/s11581-025-06200-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration-exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A hybrid slime mold enhanced convergent particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell
    Aljaidi, Mohammad
    Agrawal, Sunilkumar P.
    Parmar, Anil
    Jangir, Pradeep
    Arpita, Bhargavi Indrajit
    Trivedi, Bhargavi Indrajit
    Gulothungan, G.
    Alkoradees, Ali Fayez
    Jangid, Reena
    Khishe, Mohammad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell
    Syah, Rahmad
    Guerrero, John William Grimaldo
    Poltarykhin, Andrey Leonidovich
    Suksatan, Wanich
    Aravindhan, Surendar
    Bokov, Dmitry O.
    Abdelbasset, Walid Kamal
    Al-Janabi, Samaher
    Alkaim, Ayad F.
    Tumanov, Dmitriy Yu.
    ENERGY REPORTS, 2022, 8 : 10776 - 10785
  • [3] A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell
    Sedighizadeh, M.
    Kashani, M. Farhangian
    INTERNATIONAL JOURNAL OF ENGINEERING, 2015, 28 (01): : 16 - 24
  • [4] An accurate method for parameter estimation of proton exchange membrane fuel cell using Dandelion optimizer
    Mujeer, Syed Abdul
    Chandrasekhar, Yammani
    Kumari, Matam Sailaja
    Salkuti, Surender Reddy
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2024, 25 (03) : 333 - 344
  • [5] Parameter Estimation of Proton Exchange Membrane Fuel Cell Model Using Chaotic Embedded Particle Swarm Optimization Technique
    Mitra U.
    Arya A.
    Gupta S.
    Paliwal P.
    Verma A.
    SN Computer Science, 4 (5)
  • [6] Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    Ye, Meiyinq
    Wang, Xiaodong
    Xu, Yousheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 981 - 989
  • [7] Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
    Zhang, Wei
    Wang, Ning
    Yang, Shipin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5796 - 5806
  • [8] Parameter Identification of Proton Exchange Membrane Fuel Cell Stacks Using Bonobo Optimizer
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Tostado-Veliz, Marcos
    Jurado, Francisco
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [9] A NEW METHOD OF PARAMETER IDENTIFICATION FOR PROTON EXCHANGE MEMBRANE FUEL CELL BASED ON HYBRID PARTICLE SWARM OPTIMIZATION WITH DIFFERENTIAL EVOLUTION ALGORITHM
    Liu, Dong
    Yang, Xiangguo
    Guan, Cong
    Qi, Tianxi
    Zheng, Qinggen
    THERMAL SCIENCE, 2023, 27 (5B): : 4209 - 4222
  • [10] Adaptive Nonlinear Parameter Estimation for a Proton Exchange Membrane Fuel Cell
    Xing, Yashan
    Na, Jing
    Chen, Mingrui
    Costa-Castello, Ramon
    Roda, Vicente
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (08) : 9012 - 9023