Negative Binomial Regression Model Estimation Using Stein Approach: Methods, Simulation, and Applications

被引:0
|
作者
Ashraf, Bushra [1 ]
Amin, Muhammad [2 ]
Emam, Walid [3 ]
Tashkandy, Yusra [3 ]
Faisal, Muhammad [4 ,5 ]
机构
[1] Govt Associate Coll Women, Mandi Bahauddin, Pakistan
[2] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[3] King Saud Univ, Fac Sci, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[4] Univ Bradford, Fac Hlth Studies, Ctr Digital Innovat Hlth & Social Care, Bradford, England
[5] Wolfson Ctr Appl Hlth Res, Bradford, England
关键词
Liu estimator; maximum likelihood estimator; multicollinearity; negative binomial regression; ridge estimator; Stein estimator; RIDGE-REGRESSION; POISSON REGRESSION; PERFORMANCE; PARAMETERS;
D O I
10.1155/jom/9134821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The negative binomial regression model (NBRM) is popular for modeling count data and addressing overdispersion issues. Generally, the maximum likelihood estimator (MLE) is used to estimate the NBRM coefficients. However, when the explanatory variables in the NBRM are correlated, the MLE yields inaccurate estimates. To tackle this challenge, we propose a James-Stein estimator for the NBRM. The matrix mean squared error (MSE) and the scalar MSE properties are derived and compared with other estimators, including the ridge estimator (RE), Liu estimator (LE), and the MLE. We assess the performance of the suggested estimator using two real applications and a simulation study, with MSE serving as the assessment criterion. Results from both simulations and real applications demonstrate the superior performance of the proposed estimator over the RE, LE, and MLE.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] On the bivariate negative binomial regression model
    Famoye, Felix
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (06) : 969 - 981
  • [12] Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model
    Zhou, Wanwan
    Huang, Daizheng
    Liang, Qiuyu
    Huang, Tengda
    Wang, Xiaomin
    Pei, Hengyan
    Chen, Shiwen
    Liu, Lu
    Wei, Yuxia
    Qin, Litai
    Xie, Yihong
    BMC INFECTIOUS DISEASES, 2024, 24 (01)
  • [13] Point and Interval Estimation of the Population Size Using a Zero-Truncated Negative Binomial Regression Model
    Cruyff, Maarten J. L. F.
    van der Heijden, Peter G. M.
    BIOMETRICAL JOURNAL, 2008, 50 (06) : 1035 - 1050
  • [14] A HIERARCHICAL BAYESIAN APPROACH TO NEGATIVE BINOMIAL REGRESSION
    Fu, Shuai
    METHODS AND APPLICATIONS OF ANALYSIS, 2015, 22 (04) : 409 - 428
  • [15] Estimation of regression parameters using simulation methods
    Milek, Michal
    33RD INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2015), 2015, : 549 - 554
  • [17] A New Bivariate Negative Binomial Regression Model
    Faroughi, Pouya
    Ismail, Noriszura
    INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 732 - 736
  • [18] A Jackknifed estimators for the negative binomial regression model
    Turkan, Semra
    Ozel, Gamze
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1845 - 1865
  • [19] On ridge estimators for the negative binomial regression model
    Mansson, Kristofer
    ECONOMIC MODELLING, 2012, 29 (02) : 178 - 184
  • [20] Analyzing wildfire threat counts using a negative binomial regression model
    Quintanilha, J. A.
    Ho, L. L.
    ENVIRONMETRICS, 2006, 17 (06) : 529 - 538