Negative Binomial Regression Model Estimation Using Stein Approach: Methods, Simulation, and Applications

被引:0
|
作者
Ashraf, Bushra [1 ]
Amin, Muhammad [2 ]
Emam, Walid [3 ]
Tashkandy, Yusra [3 ]
Faisal, Muhammad [4 ,5 ]
机构
[1] Govt Associate Coll Women, Mandi Bahauddin, Pakistan
[2] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[3] King Saud Univ, Fac Sci, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[4] Univ Bradford, Fac Hlth Studies, Ctr Digital Innovat Hlth & Social Care, Bradford, England
[5] Wolfson Ctr Appl Hlth Res, Bradford, England
关键词
Liu estimator; maximum likelihood estimator; multicollinearity; negative binomial regression; ridge estimator; Stein estimator; RIDGE-REGRESSION; POISSON REGRESSION; PERFORMANCE; PARAMETERS;
D O I
10.1155/jom/9134821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The negative binomial regression model (NBRM) is popular for modeling count data and addressing overdispersion issues. Generally, the maximum likelihood estimator (MLE) is used to estimate the NBRM coefficients. However, when the explanatory variables in the NBRM are correlated, the MLE yields inaccurate estimates. To tackle this challenge, we propose a James-Stein estimator for the NBRM. The matrix mean squared error (MSE) and the scalar MSE properties are derived and compared with other estimators, including the ridge estimator (RE), Liu estimator (LE), and the MLE. We assess the performance of the suggested estimator using two real applications and a simulation study, with MSE serving as the assessment criterion. Results from both simulations and real applications demonstrate the superior performance of the proposed estimator over the RE, LE, and MLE.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318
  • [42] Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great Xing'an Mountains Better Than Negative Binomial Model
    Su, Zhangwen
    Hu, Haiqing
    Tigabu, Mulualem
    Wang, Guangyu
    Zeng, Aicong
    Guo, Futao
    FORESTS, 2019, 10 (05):
  • [43] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Departamento de Estatstica, Universidade Estatual de Campinas, Brazil
    不详
    不详
    Comput. Stat. Data Anal., 3 (1304-1318):
  • [44] Improved Liu estimator for the beta regression model: methods, simulation and applications
    Ilyas, Nimra
    Amin, Muhammad
    Akram, Muhammad Nauman
    Siddiqa, Syeda Maryam
    OPERATIONS RESEARCH AND DECISIONS, 2025, 35 (01) : 21 - 43
  • [45] EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
    KATTI, SK
    GURLAND, J
    BIOMETRIKA, 1962, 49 (1-2) : 215 - &
  • [46] Negative Binomial Kumaraswamy-G Cure Rate Regression Model
    D'Andrea, Amanda
    Rocha, Ricardo
    Tomazella, Vera
    Louzada, Francisco
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2018, 11 (01)
  • [47] Validating negative binomial lyme disease regression model with bootstrap resampling
    Tran, Phoebe
    Tran, Lam
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 82 : 121 - 127
  • [48] Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods
    Xu, Jian
    Sun, Lu
    Journal of Southeast University (English Edition), 2014, 30 (01) : 96 - 100
  • [49] Hurdle negative binomial regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2012, 36 (02) : 181 - 193
  • [50] Hurdle negative binomial regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    SORT, 2012, 36 (02): : 181 - 194