Negative Binomial Regression Model Estimation Using Stein Approach: Methods, Simulation, and Applications

被引:0
|
作者
Ashraf, Bushra [1 ]
Amin, Muhammad [2 ]
Emam, Walid [3 ]
Tashkandy, Yusra [3 ]
Faisal, Muhammad [4 ,5 ]
机构
[1] Govt Associate Coll Women, Mandi Bahauddin, Pakistan
[2] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[3] King Saud Univ, Fac Sci, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[4] Univ Bradford, Fac Hlth Studies, Ctr Digital Innovat Hlth & Social Care, Bradford, England
[5] Wolfson Ctr Appl Hlth Res, Bradford, England
关键词
Liu estimator; maximum likelihood estimator; multicollinearity; negative binomial regression; ridge estimator; Stein estimator; RIDGE-REGRESSION; POISSON REGRESSION; PERFORMANCE; PARAMETERS;
D O I
10.1155/jom/9134821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The negative binomial regression model (NBRM) is popular for modeling count data and addressing overdispersion issues. Generally, the maximum likelihood estimator (MLE) is used to estimate the NBRM coefficients. However, when the explanatory variables in the NBRM are correlated, the MLE yields inaccurate estimates. To tackle this challenge, we propose a James-Stein estimator for the NBRM. The matrix mean squared error (MSE) and the scalar MSE properties are derived and compared with other estimators, including the ridge estimator (RE), Liu estimator (LE), and the MLE. We assess the performance of the suggested estimator using two real applications and a simulation study, with MSE serving as the assessment criterion. Results from both simulations and real applications demonstrate the superior performance of the proposed estimator over the RE, LE, and MLE.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial
    Amaliana, Luthfatul
    Sa'adah, Umu
    Wardhani, Ni Wayan Surya
    FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [32] A Penalized Empirical Likelihood Approach for Estimating Population Sizes under the Negative Binomial Regression Model
    Ji, Yulu
    Liu, Yang
    MATHEMATICS, 2024, 12 (17)
  • [33] A two-parameter estimator in the negative binomial regression model
    Huang, Jiewu
    Yang, Hu
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (01) : 124 - 134
  • [34] Maximum Likelihood Estimation - Negative Binomial Regression Traffic Conflict Prediction Model Considering Variable Interactivity
    Jiang, Wei
    Tang, Yutian
    Ge, Leiyu
    Li, Ming
    2019 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2019), 2019, : 1014 - 1017
  • [35] Bayesian Inference for the Zero Inflated Negative Binomial Regression Model
    Shim, JungSuk
    Lee, Dong-Hee
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (05) : 951 - 961
  • [36] A New Effective Jackknifing Estimator in the Negative Binomial Regression Model
    Koc, Tuba
    Koc, Haydar
    SYMMETRY-BASEL, 2023, 15 (12):
  • [37] Marginal likelihood estimation for the negative binomial INGARCH model
    Pei, Jian
    Zhu, Fukang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (04) : 1814 - 1823
  • [38] Model crash frequency at highway-railroad grade crossings using negative binomial regression
    Hu, Shou-Ren
    Li, Chin-Shang
    Lee, Chi-Kang
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2012, 35 (07) : 841 - 852
  • [39] Statistical Analysis of Vehicle Theft Crime in Peninsular Malaysia using Negative Binomial Regression Model
    Zulkifli, Malina
    Razali, Ahmad Mahir
    Masseran, Nurulkamal
    Ismail, Noriszura
    SAINS MALAYSIANA, 2015, 44 (09): : 1363 - 1370
  • [40] Using a Negative Binomial Regression Model with a Bayesian Tuner to Estimate Failure Probability for Sewerage Infrastructure
    Erskine, Alec
    Watson, Tim
    O'Hagan, Anthony
    Ledgar, Samantha
    Redfearn, Deborah
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2014, 20 (01)