Point and Interval Estimation of the Population Size Using a Zero-Truncated Negative Binomial Regression Model

被引:38
|
作者
Cruyff, Maarten J. L. F. [1 ]
van der Heijden, Peter G. M. [1 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
关键词
Capture-recapture; Horvitz-Thompson estimators; Negative binomial regression; Poisson regression; Population size estimation; Zero-truncated count data;
D O I
10.1002/bimj.200810455
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the zero-truncated negative binomial regression model to estimate the population size in the presence of a single registration file. The model is all alternative to the zero-truncated Poisson regression model and it may be useful if the data are overdispersed due to unobserved heterogeneity. Horvitz-Thompson point. and interval estimates for the population size are derived, and the performance of these estimators is evaluated in a simulation study. To illustrate the model, the size of the Population of opiate users in the city of Rotterdam is estimated. In comparison to the Poisson model, the zero-truncated negative binomial regression model fits these data better and yields a substantially higher population size estimate.
引用
收藏
页码:1035 / 1050
页数:16
相关论文
共 50 条
  • [1] Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error
    Hwang, Wen-Han
    Stoklosa, Jakub
    Wang, Ching-Yun
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (02) : 303 - 320
  • [2] Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error
    Wen-Han Hwang
    Jakub Stoklosa
    Ching-Yun Wang
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 303 - 320
  • [3] Point and interval estimation of the population size using the truncated Poisson regression model
    van der Heijden, PGM
    Bustami, R
    Cruyff, MJLF
    Engbersen, G
    van Houwelingen, HC
    STATISTICAL MODELLING, 2003, 3 (04) : 305 - 322
  • [4] Modeling Intersection Traffic Crashes Using a Zero-truncated Negative Binomial Model
    Chen Y.
    Yuan H.-Z.
    Huang Z.-X.
    Wang L.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2020, 33 (04): : 146 - 154
  • [5] Zero-Truncated Negative Binomial - Erlang Distribution
    Bodhisuwan, Winai
    Pudprommarat, Chookait
    Bodhisuwan, Rujira
    Saothayanun, Luckhana
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [6] The zero-truncated symmetrical bivariate negative binomial distribution
    Sinha, Arun K.
    Kumar, Rajiv
    2001, American Sciences Press Inc. (21) : 1 - 2
  • [7] ZERO-TRUNCATED NEGATIVE BINOMIAL APPLIED TO NONLINEAR DATA
    Arrabal, Claude Thiago
    dos Santos Silva, Karina Paula
    Bandeira, Lucas Nicioli
    JP JOURNAL OF BIOSTATISTICS, 2014, 11 (01) : 55 - 67
  • [8] A new generalization of the zero-truncated negative binomial distribution by a Lagrange expansion with associated regression model and applications
    Monisha, Mohanan
    Maya, Radhakumari
    Irshad, Muhammed Rasheed
    Chesneau, Christophe
    Shibu, Damodaran Santhamani
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023,
  • [9] ESTIMATION OF PROPORTION FROM ZERO-TRUNCATED BINOMIAL DATA
    WILKINSON, G
    BIOMETRICS, 1961, 17 (01) : 153 - &
  • [10] On Size-Biased Negative Binomial Distribution and its Use in Zero-Truncated Cases
    Mir, Khurshid Ahmad
    MEASUREMENT SCIENCE REVIEW, 2009, 9 (02): : 33 - 35