Point and Interval Estimation of the Population Size Using a Zero-Truncated Negative Binomial Regression Model

被引:38
|
作者
Cruyff, Maarten J. L. F. [1 ]
van der Heijden, Peter G. M. [1 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
关键词
Capture-recapture; Horvitz-Thompson estimators; Negative binomial regression; Poisson regression; Population size estimation; Zero-truncated count data;
D O I
10.1002/bimj.200810455
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the zero-truncated negative binomial regression model to estimate the population size in the presence of a single registration file. The model is all alternative to the zero-truncated Poisson regression model and it may be useful if the data are overdispersed due to unobserved heterogeneity. Horvitz-Thompson point. and interval estimates for the population size are derived, and the performance of these estimators is evaluated in a simulation study. To illustrate the model, the size of the Population of opiate users in the city of Rotterdam is estimated. In comparison to the Poisson model, the zero-truncated negative binomial regression model fits these data better and yields a substantially higher population size estimate.
引用
收藏
页码:1035 / 1050
页数:16
相关论文
共 50 条
  • [41] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [42] Post estimation and prediction strategies in negative binomial regression model
    Lisawadi, Supranee
    Ahmed, S. E.
    Reangsephet, Orawan
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2021, 41 (06): : 463 - 477
  • [43] On variance estimation in a negative binomial time series regression model
    Wu, Rongning
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 145 - 155
  • [44] Negative Binomial Regression Model Estimation Using Stein Approach: Methods, Simulation, and Applications
    Ashraf, Bushra
    Amin, Muhammad
    Emam, Walid
    Tashkandy, Yusra
    Faisal, Muhammad
    JOURNAL OF MATHEMATICS, 2025, 2025 (01)
  • [46] Improved point and interval estimation for a beta regression model
    Ospina, Raydonal
    Cribari Neto, Francisco
    Vasconcellos, Klaus L. P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 960 - 981
  • [47] Improved shrinkage estimators in zero-inflated negative binomial regression model
    Zandi, Zahra
    Bevrani, Hossein
    Belaghi, Reza Arabi
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1855 - 1876
  • [48] A zero-inflated negative binomial regression model with hidden Markov chain
    Wang, Peiming
    Alba, Joseph D.
    ECONOMICS LETTERS, 2006, 92 (02) : 209 - 213
  • [49] A new Stein estimator for the zero-inflated negative binomial regression model
    Akram, Muhammad Nauman
    Abonazel, Mohamed R.
    Amin, Muhammad
    Kibria, B. M. Golam
    Afzal, Nimra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19):
  • [50] Likelihood estimation for a longitudinal negative binomial regression model with missing outcomes
    Bond, Simon J.
    Farewell, Vernon T.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2009, 58 : 369 - 382