Negative Binomial Regression Model Estimation Using Stein Approach: Methods, Simulation, and Applications

被引:0
|
作者
Ashraf, Bushra [1 ]
Amin, Muhammad [2 ]
Emam, Walid [3 ]
Tashkandy, Yusra [3 ]
Faisal, Muhammad [4 ,5 ]
机构
[1] Govt Associate Coll Women, Mandi Bahauddin, Pakistan
[2] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[3] King Saud Univ, Fac Sci, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[4] Univ Bradford, Fac Hlth Studies, Ctr Digital Innovat Hlth & Social Care, Bradford, England
[5] Wolfson Ctr Appl Hlth Res, Bradford, England
关键词
Liu estimator; maximum likelihood estimator; multicollinearity; negative binomial regression; ridge estimator; Stein estimator; RIDGE-REGRESSION; POISSON REGRESSION; PERFORMANCE; PARAMETERS;
D O I
10.1155/jom/9134821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The negative binomial regression model (NBRM) is popular for modeling count data and addressing overdispersion issues. Generally, the maximum likelihood estimator (MLE) is used to estimate the NBRM coefficients. However, when the explanatory variables in the NBRM are correlated, the MLE yields inaccurate estimates. To tackle this challenge, we propose a James-Stein estimator for the NBRM. The matrix mean squared error (MSE) and the scalar MSE properties are derived and compared with other estimators, including the ridge estimator (RE), Liu estimator (LE), and the MLE. We assess the performance of the suggested estimator using two real applications and a simulation study, with MSE serving as the assessment criterion. Results from both simulations and real applications demonstrate the superior performance of the proposed estimator over the RE, LE, and MLE.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A new Stein estimator for the zero-inflated negative binomial regression model
    Akram, Muhammad Nauman
    Abonazel, Mohamed R.
    Amin, Muhammad
    Kibria, B. M. Golam
    Afzal, Nimra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19):
  • [2] Post estimation and prediction strategies in negative binomial regression model
    Lisawadi, Supranee
    Ahmed, S. E.
    Reangsephet, Orawan
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2021, 41 (06): : 463 - 477
  • [3] On variance estimation in a negative binomial time series regression model
    Wu, Rongning
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 145 - 155
  • [4] Some Methods for Estimation in a Negative-Binomial Model
    Eiji Nakashima
    Annals of the Institute of Statistical Mathematics, 1997, 49 : 101 - 115
  • [5] Improved estimation in negative binomial regression
    Kenne Pagui, Euloge Clovis
    Salvan, Alessandra
    Sartori, Nicola
    STATISTICS IN MEDICINE, 2022, 41 (13) : 2403 - 2416
  • [6] Some methods for estimation in a negative-binomial model
    Nakashima, E
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1997, 49 (01) : 101 - 115
  • [7] Likelihood estimation for a longitudinal negative binomial regression model with missing outcomes
    Bond, Simon J.
    Farewell, Vernon T.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2009, 58 : 369 - 382
  • [8] Kibria-Lukman estimator for the zero inflated negative binomial regression model: theory, simulation and applications
    Akram, Muhammad Nauman
    Amin, Muhammad
    Afzal, Nimra
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [10] Estimation of adjusted rate differences using additive negative binomial regression
    Donoghoe, Mark W.
    Marschner, Ian C.
    STATISTICS IN MEDICINE, 2016, 35 (18) : 3166 - 3178