Point and Interval Estimation of the Population Size Using a Zero-Truncated Negative Binomial Regression Model

被引:38
|
作者
Cruyff, Maarten J. L. F. [1 ]
van der Heijden, Peter G. M. [1 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
关键词
Capture-recapture; Horvitz-Thompson estimators; Negative binomial regression; Poisson regression; Population size estimation; Zero-truncated count data;
D O I
10.1002/bimj.200810455
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the zero-truncated negative binomial regression model to estimate the population size in the presence of a single registration file. The model is all alternative to the zero-truncated Poisson regression model and it may be useful if the data are overdispersed due to unobserved heterogeneity. Horvitz-Thompson point. and interval estimates for the population size are derived, and the performance of these estimators is evaluated in a simulation study. To illustrate the model, the size of the Population of opiate users in the city of Rotterdam is estimated. In comparison to the Poisson model, the zero-truncated negative binomial regression model fits these data better and yields a substantially higher population size estimate.
引用
收藏
页码:1035 / 1050
页数:16
相关论文
共 50 条
  • [21] Zero-Truncated Negative Binomial Weighted-Lindley Distribution and Its Application
    Rujira Bodhisuwan
    Sunthree Denthet
    Tannen Acoose
    Lobachevskii Journal of Mathematics, 2021, 42 : 3105 - 3111
  • [22] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487
  • [23] Analysis of Railroad Accident Prediction using Zero-truncated Negative Binomial Regression and Artificial Neural Network Model: A Case Study of National Railroad in South Korea
    Kwang-Kyun Lim
    KSCE Journal of Civil Engineering, 2023, 27 : 333 - 344
  • [24] Analysis of Railroad Accident Prediction using Zero-truncated Negative Binomial Regression and Artificial Neural Network Model: A Case Study of National Railroad in South Korea
    Lim, Kwang-Kyun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (01) : 333 - 344
  • [25] Extending Zelterman's approach for robust estimation of population size to zero-truncated clustered data
    Navaratna, W. C. W.
    Vilas, Victor J. del Rio
    Bohning, Dankmar
    BIOMETRICAL JOURNAL, 2008, 50 (04) : 584 - 596
  • [26] Mean regression model for the zero-truncated Poisson distribution and its generalization
    Li, Xun-Jian
    Sun, Yuan
    Tian, Guo-Liang
    Liang, Jiajuan
    Shi, Jianhua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [27] A marginalized zero-truncated Poisson regression model and its model averaging prediction
    Liu, Yin
    Li, Wenhui
    Zhang, Xinyu
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,
  • [28] Estimation of Population Size Based on One-Inflated, Zero-Truncated Count Distribution with Covariate Information
    Jongsomjit, Tita
    Lerdsuwansri, Rattana
    SAINS MALAYSIANA, 2023, 52 (12): : 3577 - 3587
  • [29] Modelling noise in second generation sequencing forensic genetics STR data using a one-inflated (zero-truncated) negative binomial model
    Vilsen, Soren B.
    Tvedebrink, Torben
    Mogensen, Helle Smidt
    Morling, Niels
    FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES, 2015, 5 : E416 - E417
  • [30] Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model
    Zhou, Wanwan
    Huang, Daizheng
    Liang, Qiuyu
    Huang, Tengda
    Wang, Xiaomin
    Pei, Hengyan
    Chen, Shiwen
    Liu, Lu
    Wei, Yuxia
    Qin, Litai
    Xie, Yihong
    BMC INFECTIOUS DISEASES, 2024, 24 (01)