Non-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation

被引:0
|
作者
Zhang, Ke [1 ,2 ,3 ,4 ]
Triphan, Simon M. F. [1 ,2 ,3 ]
Wielpuetz, Mark O. [1 ,2 ,3 ]
Ziener, Christian H. [4 ]
Ladd, Mark E. [5 ,6 ,7 ]
Schlemmer, Heinz-Peter [4 ]
Kauczor, Hans-Ulrich [1 ,2 ,3 ]
Sedlaczek, Oliver [1 ,3 ,4 ]
Kurz, Felix T. [4 ,8 ]
机构
[1] Heidelberg Univ Hosp, Dept Diagnost & Intervent Radiol, Heidelberg, Germany
[2] German Ctr Lung Res DZL, Translat Lung Res Ctr TLRC, Heidelberg, Germany
[3] Heidelberg Univ Hosp, Dept Diagnost & Intervent Radiol Nucl Med, Thoraxklin, Heidelberg, Germany
[4] German Canc Res Ctr, Div Radiol, D-69120 Heidelberg, Germany
[5] German Canc Res Ctr, Div Med Phys Radiol, Heidelberg, Germany
[6] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[7] Heidelberg Univ, Fac Med, Heidelberg, Germany
[8] Geneva Univ Hosp, Div Neuroradiol, Geneva, Switzerland
来源
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK | 2025年 / 35卷 / 01期
关键词
Velocity selective arterial spin labeling; Liver perfusion; Prospective motion compensation; Navigator-based slice tracking; BLOOD-FLOW; ARTERIAL; QUANTIFICATION;
D O I
10.1016/j.zemedi.2024.06.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent. Methods: Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery. Results: The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 +/- 18.44% for control images, and 29.89 +/- 20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M-0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques. Conclusions: This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [21] Free-Breathing Myocardial Perfusion MRI Using SW-CG-HYPR and Motion Correction
    Ge, Lan
    Kino, Aya
    Griswold, Mark
    Carr, James C.
    Li, Debiao
    MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) : 1148 - 1154
  • [22] Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys
    Song H.
    Ruan D.
    Liu W.
    Stenger V.A.
    Pohmann R.
    Fernández-Seara M.A.
    Nair T.
    Jung S.
    Luo J.
    Motai Y.
    Ma J.
    Hazle J.D.
    Gach H.M.
    Gach, H. Michael (gachhm@wustl.edu), 1600, John Wiley and Sons Ltd (44): : 962 - 973
  • [23] Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys
    Song, Hao
    Ruan, Dan
    Liu, Wenyang
    Stenger, V. Andrew
    Pohmann, Rolf
    Fernandez-Seara, Maria A.
    Nair, Tejas
    Jung, Sungkyu
    Luo, Jingqin
    Motai, Yuichi
    Ma, Jingfei
    Hazle, John D.
    Gach, H. Michael
    MEDICAL PHYSICS, 2017, 44 (03) : 962 - 973
  • [24] Low-rank motion correction for accelerated free-breathing first-pass myocardial perfusion imaging
    Cruz, Gastao
    Hua, Alina
    Munoz, Camila
    Ismail, Tevfik Fehmi
    Chiribiri, Amedeo
    Botnar, Rene Michael
    Prieto, Claudia
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (01) : 64 - 78
  • [25] First attempt to motion corrected flow encoding using free-breathing phase-contrast CINE MRI
    Christophe Meyer
    Pierre-Andre Vuissoz
    Damien Mandry
    Jacques Felblinger
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [26] FREE-BREATHING MAGNETIC RESONANCE IMAGING FOR DIAGNOSIS OF PAEDIATRIC NON-ALCOHOLIC FATTY LIVER DISEASE
    Ly, K. V.
    Armstrong, T.
    Ghahremani, S.
    Wu, H. H.
    Calkins, K. L.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2018, 66 (01) : 167 - 167
  • [27] Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction
    Bones, Isabell K.
    Harteveld, Anita A.
    Franklin, Suzanne L.
    van Osch, Matthias J. P.
    Hendrikse, Jeroen
    Moonen, Chrit T. W.
    Bos, Clemens
    van Stralen, Marijn
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) : 276 - 288
  • [28] RAPID FREE-BREATHING DYNAMIC CONTRAST-ENHANCED MRI USING MOTION-RESOLVED COMPRESSED SENSING
    Feng, Li
    Sodickson, Daniel K.
    Otazo, Ricardo
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 889 - 892
  • [29] Improved Workflow for Quantification of Right Ventricular Volumes Using Free-Breathing Motion Corrected Cine Imaging
    Merlocco, Anthony
    Olivieri, Laura
    Kellman, Peter
    Xue, Hui
    Cross, Russell
    PEDIATRIC CARDIOLOGY, 2019, 40 (01) : 79 - 88
  • [30] Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion
    Solomon, Eddy
    Rigie, David S.
    Vahle, Thomas
    Paska, Jan
    Bollenbeck, Jan
    Sodickson, Daniel K.
    Boada, Fernando E.
    Block, Kai Tobias
    Chandarana, Hersh
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (05) : 2672 - 2685