Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
|
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] EEG resting-state functional connectivity: evidence for an imbalance of external/internal information integration in autism
    Prany, Wantzen
    Patrice, Clochon
    Franck, Doidy
    Fabrice, Wallois
    Mahdi, Mahmoudzadeh
    Pierre, Desaunay
    Christian, Mille
    Jean-Marc, Guile
    Fabian, Guenole
    Francis, Eustache
    Jean-Marc, Baleyte
    Berengere, Guillery-Girard
    JOURNAL OF NEURODEVELOPMENTAL DISORDERS, 2022, 14 (01)
  • [42] Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study
    Zhang, Yujin
    Zhu, Chaozhe
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [43] Comparative analysis of resting-state EEG functional connectivity in depression and obsessive-compulsive disorder
    Mitiureva, Dina
    Sysoeva, Olga
    Proshina, Ekaterina
    Portnova, Galina
    Khayrullina, Guzal
    Martynova, Olga
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2024, 342
  • [44] The power spectrum and functional connectivity characteristics of resting-state EEG in patients with generalized anxiety disorder
    Wang, Hangwei
    Mou, Shaoqi
    Pei, Xuedan
    Zhang, Xiaomei
    Shen, Shanhong
    Zhang, Jianfeng
    Shen, Xinhua
    Shen, Zhongxia
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [45] Altered functional and directed connectivity in propofol-induced loss of consciousness: A source-space resting-state EEG study
    Chen, Yali
    Li, Shitong
    Wu, Fan
    Zou, Ling
    Zhang, Jun
    CLINICAL NEUROPHYSIOLOGY, 2022, 142 : 209 - 219
  • [46] Predicting individual decision-making responses based on the functional connectivity of resting-state EEG
    Si, Yajing
    Jiang, Lin
    Tao, Qin
    Chen, Chunli
    Li, Fali
    Jiang, Yuanling
    Zhang, Tao
    Cao, Xianyu
    Wan, Feng
    Yao, Dezhong
    Xu, Peng
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (06)
  • [47] Prediction of Cognitive Task Activations via Resting-State Functional Connectivity Networks: An EEG Study
    Wang, Luyao
    Zhang, Jian
    Liu, Tiantian
    Chen, Duanduan
    Yang, Dikun
    Go, Ritsu
    Wu, Jinglong
    Yan, Tianyi
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (01) : 181 - 188
  • [48] Psychotic disorders, dopaminergic agents and EEG/MEG resting-state functional connectivity: A systematic review
    Mackintosh, Amatya Johanna
    de Bock, Renate
    Lim, Zehwi
    Trulley, Valerie-Noelle
    Schmidt, Andre
    Borgwardt, Stefan
    Andreou, Christina
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 120 : 354 - 371
  • [49] EEG resting-state functional connectivity: evidence for an imbalance of external/internal information integration in autism
    Prany Wantzen
    Patrice Clochon
    Franck Doidy
    Fabrice Wallois
    Mahdi Mahmoudzadeh
    Pierre Desaunay
    Mille Christian
    Jean-Marc Guilé
    Fabian Guénolé
    Francis Eustache
    Jean-Marc Baleyte
    Bérengère Guillery-Girard
    Journal of Neurodevelopmental Disorders, 2022, 14
  • [50] Visual Snow Syndrome: The impact of real-time functional magnetic resonance imaging neurofeedback on resting-state functional connectivity
    Michels, Lars
    Mazloum, Reza
    Schoepfer, Raphaela
    Stampfli, Philipp
    Weber, Konrad
    Disse, Leah
    Schankin, Christopher
    Fierz, Fabienne
    CEPHALALGIA, 2023, 43 (1supp) : 327 - 328