Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
|
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity
    Xu, Na
    Shan, Wei
    Qi, Jing
    Wu, Jianping
    Wang, Qun
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [32] Thalamocortical functional connectivity in patients with insomnia using resting-state fMRI
    Kim, Nambeom
    Won, Eunsoo
    Cho, Seo-Eun
    Kang, Chang-Ki
    Kang, Seung-Gul
    JOURNAL OF PSYCHIATRY & NEUROSCIENCE, 2021, 46 (06): : E639 - E646
  • [33] Parcellating the human brain using resting-state dynamic functional connectivity
    Peng, Limin
    Luo, Zhiguo
    Zeng, Ling-Li
    Hou, Chenping
    Shen, Hui
    Zhou, Zongtan
    Hu, Dewen
    CEREBRAL CORTEX, 2023, 33 (07) : 3575 - 3590
  • [34] A longitudinal model for functional connectivity networks using resting-state fMRI
    Hart, Brian
    Cribben, Ivor
    Fiecas, Mark
    NEUROIMAGE, 2018, 178 : 687 - 701
  • [35] Functional Connectivity in Patients With Parkinson's Disease and Freezing of Gait Using Resting-State EEG and Graph Theory
    Bosch, Taylor J.
    Espinoza, Arturo I.
    Mancini, Martina
    Horak, Fay B.
    Singh, Arun
    NEUROREHABILITATION AND NEURAL REPAIR, 2022, 36 (10-11) : 715 - 725
  • [36] Mutual connectivity analysis of resting-state functional MRI data with local models
    DSouza, Adora M.
    Abidin, Anas Z.
    Chockanathan, Udaysankar
    Schifitto, Giovanni
    Wismueller, Axel
    NEUROIMAGE, 2018, 178 : 210 - 223
  • [37] Schizophrenia Classification Using Resting State EEG Functional Connectivity: Source Level Outperforms Sensor Level
    Azizi, Sima
    Hier, Daniel B.
    Wunsch, Donald C.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1770 - 1773
  • [38] RESTING STATE NETWORK FUNCTIONAL CONNECTIVITY IN THE DYING BRAIN USING EEG
    Blundon, Elizabeth
    Gallagher, Romayne
    Ward, Lawrence
    PSYCHOPHYSIOLOGY, 2022, 59 : S157 - S157
  • [39] Advancing motion denoising of multiband resting-state functional connectivity fMRI data
    Williams, John C.
    Tubiolo, Philip N.
    Luceno, Jacob R.
    Van Snellenberg, Jared X.
    NEUROIMAGE, 2022, 249
  • [40] Model testing for distinctive functional connectivity gradients with resting-state fMRI data
    O'Rawe, Jonathan F.
    Ide, Jaime S.
    Leung, Hoi-Chung
    NEUROIMAGE, 2019, 185 : 102 - 110