Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
|
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The impact of genetic variation in comt and bdnf on resting-state functional connectivity
    Jang, Joon Hwan
    Yun, Je-Yeon
    Jung, Wi Hoon
    Shim, Geumsook
    Byun, Min Soo
    Hwang, Jae Yeon
    Kim, Sung Nyun
    Choi, Chi-Hoon
    Kwon, Jun Soo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2012, 22 (01) : 97 - 102
  • [22] RESTING-STATE FUNCTIONAL CONNECTIVITY IN THE VIGILANT ATTENTION NETWORK: IMPACT OF SEX
    Morandini, H.
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2023, 57 (01): : 50 - 50
  • [23] Assessing the Relationship between Verbal and Nonverbal Cognitive Abilities Using Resting-State EEG Functional Connectivity
    Feklicheva, Inna
    Zakharov, Ilya
    Chipeeva, Nadezda
    Maslennikova, Ekaterina
    Korobova, Svetlana
    Adamovich, Timofey
    Ismatullina, Victoria
    Malykh, Sergey
    BRAIN SCIENCES, 2021, 11 (01) : 1 - 15
  • [24] Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data
    Cordes, D
    Haughton, VM
    Arfanakis, K
    Carew, JD
    Turski, PA
    Moritz, CH
    Quigley, MA
    Meyerand, ME
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2001, 22 (07) : 1326 - 1333
  • [25] RESTING-STATE FEATURES OF THE BRAIN FUNCTIONAL CONNECTIVITY IN PATIENTS WITH LATERALIZED TEMPORAL MEDIOBASAL LESIONS (FMRI AND EEG DATA)
    Kuleva, A. Yu
    Sharova, E., V
    Boldyreva, G. N.
    Strunina, Yu, V
    Yarets, M. Yu
    Galkin, M., V
    Bychkova, A. S.
    Smirnov, A. S.
    Krotkova, O. A.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2022, 72 (02) : 187 - 200
  • [26] Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures
    Tsai, Min-Lan
    Wang, Chuang-Chin
    Lee, Feng-Chin
    Peng, Syu-Jyun
    Chang, Hsi
    Tseng, Sung-Hui
    BIOMEDICINES, 2022, 10 (07)
  • [27] Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study
    Adianes Herrera-Díaz
    Raúl Mendoza-Quiñones
    Lester Melie-Garcia
    Eduardo Martínez-Montes
    Gretel Sanabria-Diaz
    Yuniel Romero-Quintana
    Iraklys Salazar-Guerra
    Mario Carballoso-Acosta
    Antonio Caballero-Moreno
    Brain Topography, 2016, 29 : 368 - 381
  • [28] Unifying Blind Separation and Clustering for Resting-State EEG/MEG Functional Connectivity Analysis
    Hirayama, Jun-ichiro
    Ogawa, Takeshi
    Hyvaerinen, Aapo
    NEURAL COMPUTATION, 2015, 27 (07) : 1373 - 1404
  • [29] Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study
    Herrera-Diaz, Adianes
    Mendoza-Quinones, Raul
    Melie-Garcia, Lester
    Martinez-Montes, Eduardo
    Sanabria-Diaz, Gretel
    Romero-Quintana, Yuniel
    Salazar-Guerra, Iraklys
    Carballoso-Acosta, Mario
    Caballero-Moreno, Antonio
    BRAIN TOPOGRAPHY, 2016, 29 (03) : 368 - 381
  • [30] Identifying motor functional neurological disorder using resting-state functional connectivity
    Wegrzyk, Jennifer
    Kebets, Valeria
    Richiardi, Jonas
    Galli, Silvio
    Van de Ville, Dimitri
    Aybek, Selma
    NEUROIMAGE-CLINICAL, 2018, 17 : 163 - 168