Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
|
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Schizophrenia, dopamine and eeg resting-state functional connectivity: A systematic review
    Mackintosh, A.
    Golz, L.
    Andreou, C.
    EUROPEAN PSYCHIATRY, 2018, 48 : S322 - S322
  • [12] Detection of Obsessive Compulsive Disorder Using Resting-State Functional Connectivity Data
    Shenas, Sona Khaneh
    Halici, Ugur
    Cicek, Metehan
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 132 - 136
  • [13] Functional brain connectivity in resting-state fMRI using phase and magnitude data
    Chen, Zikuan
    Caprihan, Arvind
    Damaraju, Eswar
    Rachakonda, Srinivas
    Calhoun, Vince
    JOURNAL OF NEUROSCIENCE METHODS, 2018, 293 : 299 - 309
  • [14] PTSD Subtype Identification Based on Resting-State EEG Functional Connectivity Biomarkers
    Zhang, Yu
    Toll, Russell
    Wu, Wei
    Longwell, Parker
    Shpigel, Emmanuel
    Abu Amara, Duna
    Gonzalez, Bryan
    Mann, Silas
    Hart, Roland
    Marmar, Charles
    Etkin, Amit
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S141 - S141
  • [15] A fusion analytic framework for investigating functional brain connectivity differences using resting-state fMRI
    Jeon, Yeseul
    Kim, Jeong-Jae
    Yu, Sumin
    Choi, Junggu
    Han, Sanghoon
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [16] Whole-brain electrophysiological functional connectivity dynamics in resting-state EEG
    Shou, Guofa
    Yuan, Han
    Li, Chuang
    Chen, Yafen
    Chen, Yuxuan
    Ding, Lei
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (02)
  • [17] Reproducibility of power spectrum, functional connectivity and network construction in resting-state EEG
    Duan, Wei
    Chen, Xinyuan
    Wang, Ya-Jie
    Zhao, Wenrui
    Yuan, Hong
    Lei, Xu
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 348
  • [18] Investigating resting-state functional connectivity in the cervical spinal cord at 3 T
    Eippert, Falk
    Kong, Yazhuo
    Winkler, Anderson M.
    Andersson, Jesper L.
    Finsterbusch, Juergen
    Buechel, Christian
    Brooks, Jonathan C. W.
    Tracey, Irene
    NEUROIMAGE, 2017, 147 : 589 - 601
  • [19] Migraine classification using magnetic resonance imaging resting-state functional connectivity data
    Chong, Catherine D.
    Gaw, Nathan
    Fu, Yinlin
    Li, Jing
    Wu, Teresa
    Schwedt, Todd J.
    CEPHALALGIA, 2017, 37 (09) : 828 - 844
  • [20] Mapping resting-state functional connectivity using perfusion MRI
    Chuang, Kai-Hsiang
    Van Gelderen, Peter
    Merkle, Hellmut
    Bodurka, Jerzy
    Ikonomidou, Vasiliki N.
    Koretsky, Alan P.
    Duyn, Jeff H.
    Talagala, S. Lalith
    NEUROIMAGE, 2008, 40 (04) : 1595 - 1605