Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
|
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparison of functional connectivity metrics using an unsupervised approach: a source resting-state EEG study
    Fraschini, Matteo
    Lai, Margherita
    Didaci, Luca
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2018, 17 (04) : 393 - 396
  • [2] Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data
    Ciprian, Claudio
    Masychev, Kirin
    Ravan, Maryam
    Manimaran, Akshaya
    Deshmukh, AnkitaAmol
    ALGORITHMS, 2021, 14 (05)
  • [3] Altered resting-state EEG source functional connectivity in schizophrenia: the effect of illness duration
    Di Lorenzo, Giorgio
    Daverio, Andrea
    Ferrentino, Fabiola
    Santarnecchi, Emiliano
    Ciabattini, Fabio
    Monaco, Leonardo
    Lisi, Giulia
    Barone, Ylenia
    Di Lorenzo, Cherubino
    Niolu, Cinzia
    Seri, Stefano
    Siracusano, Alberto
    FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
  • [4] Functional connectivity in burnout syndrome: a resting-state EEG study
    Afek, Natalia
    Harmatiuk, Dmytro
    Gawlowska, Magda
    Ferreira, Joao Miguel Alves
    Golonka, Krystyna
    Tukaiev, Sergii
    Popov, Anton
    Marek, Tadeusz
    FRONTIERS IN HUMAN NEUROSCIENCE, 2025, 19
  • [5] Resting-state EEG functional connectivity in Parkinson's disease
    Shoorangiz, R.
    Peterson, E.
    Jones, R.
    Livingston, L.
    Kirk, I.
    Tippett, L.
    Livingstone, M.
    Anderson, T.
    Dalrymple-Alford, J.
    MOVEMENT DISORDERS, 2019, 34
  • [6] Resting-State EEG Source Localization and Functional Connectivity in Schizophrenia-Like Psychosis of Epilepsy
    Canuet, Leonides
    Ishii, Ryouhei
    Pascual-Marqui, Roberto D.
    Iwase, Masao
    Kurimoto, Ryu
    Aoki, Yasunori
    Ikeda, Shunichiro
    Takahashi, Hidetoshi
    Nakahachi, Takayuki
    Takeda, Masatoshi
    PLOS ONE, 2011, 6 (11):
  • [7] CHANGES OF RESTING-STATE EEG AND FUNCTIONAL CONNECTIVITY IN THE SENSOR AND SOURCE SPACE OF PATIENTS WITH MAJOR DEPRESSION
    Keeser, D.
    Karch, S.
    Kirsch, V.
    Davis, J. R.
    Lnger, A.
    Chrobok, A.
    Loy, F.
    Surmeli, T.
    Engelbregt, H.
    Thatcher, R. W.
    Pogarell, O.
    EUROPEAN PSYCHIATRY, 2014, 29
  • [8] Study of Resting-State Functional Connectivity Networks Using EEG Electrodes Position As Seed
    Rojas, Gonzalo M.
    Alvarez, Carolina
    Montoya, Carlos E.
    de la Iglesia-Vaya, Maria
    Cisternas, Jaime E.
    Galvez, Marcelo
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [9] Investigation of resting-state EEG functional connectivity in frontotemporal lobar degeneration
    Pijnenburg, Yolande A. L.
    Strijers, Rob L. M.
    Made, Yolande Vd
    van der Flier, Wiesje M.
    Scheltens, Philip
    Stam, Cornelis J.
    CLINICAL NEUROPHYSIOLOGY, 2008, 119 (08) : 1732 - 1738
  • [10] Functional Connectivity Biomarkers Based on Resting-State EEG for Stroke Recovery
    Issa, Mohamed F.
    Gyulai, Adam
    Kozmann, Gyorgy
    Nagy, Zoltan
    Juhasz, Zoltan
    2019 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MEASUREMENT (MEASUREMENT 2019), 2019, : 133 - 136