Li1.6AlCl3.4S0.6: a low-cost and high-performance solid electrolyte for solid-state batteries

被引:0
|
作者
Poudel, Tej P. [1 ,2 ,5 ]
Oyekunle, Ifeoluwa P. [2 ,5 ]
Deck, Michael J. [2 ,5 ]
Chen, Yudan [2 ,5 ]
Hou, Dewen [3 ]
Ojha, Pawan K. [2 ,5 ]
Ogbolu, Bright O. [2 ,5 ]
Huang, Chen [1 ,2 ]
Xiong, Hui [4 ]
Hu, Yan-Yan [1 ,2 ,5 ]
机构
[1] Florida State Univ, Grad Sch, Mat Sci & Engn Program, 2005 Levy Ave, Tallahassee, FL 32310 USA
[2] Florida State Univ, Dept Chem & Biochem, 95 Chieftan Way, Tallahassee, FL 32306 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA
[4] Boise State Univ, Micron Sch Mat Sci & Engn, Boise, ID 83725 USA
[5] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
ION TRANSPORT; LITHIUM; STABILITY; CONDUCTOR; BR; CL;
D O I
10.1039/d4sc07151d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li+ conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (Li1.6AlCl3.4S0.6) using inexpensive precursors via one-step mechanochemical milling. The resulting Cl-S mixed-anion sublattice significantly improves the ionic conductivity from 0.008 mS cm-1 for LiAlCl4 to 0.18 mS cm-1 for Li1.6AlCl3.4S0.6 at 25 degrees C. Structural refinement of the high-resolution XRD patterns and 6Li magic-angle-spinning (MAS) NMR quantitative analysis reveals the formation of tetrahedrally-coordinated, face- and edge-shared LiClxSy octahedra that facilitate 3D Li+ transport. Ab initio molecular dynamics (AIMD) simulations on Li1.6AlCl3.4S0.6 support an enhanced 3D network for Li+ migration with increased diffusivity. All-solid-state battery (ASSB) half-cells using Li1.6AlCl3.4S0.6 exhibit high-rate and long-term stable cycling performance. This work highlights the potential of Li1.6AlCl3.4S0.6 as a cost-effective and high-performance SE for ASSBs.
引用
收藏
页码:2391 / 2401
页数:11
相关论文
共 50 条
  • [41] Synergistic Effect of Temperature and Electrolyte Concentration on Solid-State Interphase for High-Performance Lithium Metal Batteries
    Li, Quan
    Xue, Weiran
    Peng, Jiayue
    Yang, Lufeng
    Pan, Hongyi
    Yu, Xiqian
    Li, Hong
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [42] A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries
    Lin, Xiujing
    Chu, Chengcheng
    Li, Zhuang
    Zhang, Tingting
    Chen, Jianyu
    Liu, Ruiqing
    Li, Pan
    Li, Yi
    Zhao, Jin
    Huang, Zhendong
    Feng, Xiaomiao
    Xie, Yannan
    Ma, Yanwen
    NANO ENERGY, 2021, 89
  • [43] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [44] High-Performance Lithium Solid-State Batteries Operating at Elevated Temperature
    Wang, Hui
    Ma, Cheng
    Chi, Miaofang
    Liang, Chengdu
    ADVANCED MATERIALS INTERFACES, 2015, 2 (17):
  • [45] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669
  • [46] A Flexible Solid Polymer Electrolyte based Polymerized Ionic Liquid for High Performance Solid-State Batteries
    Liu, Yuxiang
    Ma, Furui
    Li, Wenpeng
    Gai, Ligang
    Yang, Haohua
    Zhang, Zengqi
    BATTERIES & SUPERCAPS, 2023, 6 (06)
  • [47] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Snehashis Choudhury
    Sanjuna Stalin
    Duylinh Vu
    Alexander Warren
    Yue Deng
    Prayag Biswal
    Lynden A. Archer
    Nature Communications, 10
  • [48] Minimizing surface defects for high-performance garnet-based solid-state Li metal batteries
    Ji, Chuang
    Zhou, Shengmin
    Cai, Lan
    Yuan, Yingyi
    Liu, Xueming
    Huang, Pengru
    Xiong, Xunhui
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [49] The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
    Wu, Bingbin
    Wang, Shanyu
    Lochala, Joshua
    Desrochers, David
    Liu, Bo
    Zhang, Wenqing
    Yang, Jihui
    Xiao, Jie
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) : 1803 - 1810
  • [50] Uniform and Anisotropic Solid Electrolyte Membrane Enables Superior Solid-State Li Metal Batteries
    Guo, Zumin
    Pang, Yuepeng
    Xia, Shuixin
    Xu, Fen
    Yang, Junhe
    Sun, Lixian
    Zheng, Shiyou
    ADVANCED SCIENCE, 2021, 8 (16)