Li1.6AlCl3.4S0.6: a low-cost and high-performance solid electrolyte for solid-state batteries

被引:0
|
作者
Poudel, Tej P. [1 ,2 ,5 ]
Oyekunle, Ifeoluwa P. [2 ,5 ]
Deck, Michael J. [2 ,5 ]
Chen, Yudan [2 ,5 ]
Hou, Dewen [3 ]
Ojha, Pawan K. [2 ,5 ]
Ogbolu, Bright O. [2 ,5 ]
Huang, Chen [1 ,2 ]
Xiong, Hui [4 ]
Hu, Yan-Yan [1 ,2 ,5 ]
机构
[1] Florida State Univ, Grad Sch, Mat Sci & Engn Program, 2005 Levy Ave, Tallahassee, FL 32310 USA
[2] Florida State Univ, Dept Chem & Biochem, 95 Chieftan Way, Tallahassee, FL 32306 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA
[4] Boise State Univ, Micron Sch Mat Sci & Engn, Boise, ID 83725 USA
[5] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
ION TRANSPORT; LITHIUM; STABILITY; CONDUCTOR; BR; CL;
D O I
10.1039/d4sc07151d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li+ conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (Li1.6AlCl3.4S0.6) using inexpensive precursors via one-step mechanochemical milling. The resulting Cl-S mixed-anion sublattice significantly improves the ionic conductivity from 0.008 mS cm-1 for LiAlCl4 to 0.18 mS cm-1 for Li1.6AlCl3.4S0.6 at 25 degrees C. Structural refinement of the high-resolution XRD patterns and 6Li magic-angle-spinning (MAS) NMR quantitative analysis reveals the formation of tetrahedrally-coordinated, face- and edge-shared LiClxSy octahedra that facilitate 3D Li+ transport. Ab initio molecular dynamics (AIMD) simulations on Li1.6AlCl3.4S0.6 support an enhanced 3D network for Li+ migration with increased diffusivity. All-solid-state battery (ASSB) half-cells using Li1.6AlCl3.4S0.6 exhibit high-rate and long-term stable cycling performance. This work highlights the potential of Li1.6AlCl3.4S0.6 as a cost-effective and high-performance SE for ASSBs.
引用
收藏
页码:2391 / 2401
页数:11
相关论文
共 50 条
  • [21] Bi-nanofillers integrated into PEO-based electrolyte for high-performance solid-state Li metal batteries
    Yin, Junying
    Xu, Xin
    Jiang, Sen
    Lei, Yue
    Gao, Yunfang
    JOURNAL OF POWER SOURCES, 2022, 550
  • [22] Phase-Transition Interlayer Enables High-Performance Solid-State Sodium Batteries with Sulfide Solid Electrolyte
    Li, Yang
    Arnold, William
    Halacoglu, Selim
    Jasinski, Jacek B.
    Druffel, Thad
    Wang, Hui
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (28)
  • [23] A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries
    Zhao, Bing
    Ma, Wencheng
    Li, Bobo
    Hu, Xiongtao
    Lu, Shangying
    Liu, Xiaoyu
    Jiang, Yong
    Zhang, Jiujun
    NANO ENERGY, 2022, 91
  • [24] Low-Cost, High-Strength Cellulose-based Quasi-Solid Polymer Electrolyte for Solid-State Lithium-Metal Batteries
    Wang, Dai
    Xie, Hui
    Liu, Qiang
    Mu, Kexin
    Song, Zhennuo
    Xu, Weijian
    Tian, Lei
    Zhu, Caizhen
    Xu, Jian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)
  • [25] High-performance lithium–sulfur batteries utilizing charged binder and solid-state ionogel electrolyte
    Jeong Mu Heo
    Junyoung Mun
    Keun Hyung Lee
    Macromolecular Research, 2024, 32 : 187 - 196
  • [26] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Thamayanthi Panneerselvam
    Arunkumar Rajamani
    Narayanasamy Janani
    Ramaswamy Murugan
    Sivaraman Sivaprakasam
    Ionics, 2023, 29 : 1395 - 1406
  • [27] Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries
    Wang, Bingyao
    Wang, Guoxu
    He, Pingge
    Fan, Li-Zhen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 642
  • [28] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Panneerselvam, Thamayanthi
    Rajamani, Arunkumar
    Janani, Narayanasamy
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    IONICS, 2023, 29 (04) : 1395 - 1406
  • [29] Functional dielectric materials for high-performance solid-state batteries
    Wang, Dongming
    Wang, Zhuyi
    Liang, Wenbiao
    Han, Yuxiao
    Zhao, Yin
    Lv, Yingying
    Shi, Liyi
    Yuan, Shuai
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (02) : 354 - 380
  • [30] Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries
    Lin, Ruoqian
    He, Yubin
    Wang, Chunyang
    Zou, Peichao
    Hu, Enyuan
    Yang, Xiao-Qing
    Xu, Kang
    Xin, Huolin L.
    NATURE NANOTECHNOLOGY, 2022, 17 (07) : 768 - +