Li1.6AlCl3.4S0.6: a low-cost and high-performance solid electrolyte for solid-state batteries

被引:0
|
作者
Poudel, Tej P. [1 ,2 ,5 ]
Oyekunle, Ifeoluwa P. [2 ,5 ]
Deck, Michael J. [2 ,5 ]
Chen, Yudan [2 ,5 ]
Hou, Dewen [3 ]
Ojha, Pawan K. [2 ,5 ]
Ogbolu, Bright O. [2 ,5 ]
Huang, Chen [1 ,2 ]
Xiong, Hui [4 ]
Hu, Yan-Yan [1 ,2 ,5 ]
机构
[1] Florida State Univ, Grad Sch, Mat Sci & Engn Program, 2005 Levy Ave, Tallahassee, FL 32310 USA
[2] Florida State Univ, Dept Chem & Biochem, 95 Chieftan Way, Tallahassee, FL 32306 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA
[4] Boise State Univ, Micron Sch Mat Sci & Engn, Boise, ID 83725 USA
[5] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
ION TRANSPORT; LITHIUM; STABILITY; CONDUCTOR; BR; CL;
D O I
10.1039/d4sc07151d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li+ conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (Li1.6AlCl3.4S0.6) using inexpensive precursors via one-step mechanochemical milling. The resulting Cl-S mixed-anion sublattice significantly improves the ionic conductivity from 0.008 mS cm-1 for LiAlCl4 to 0.18 mS cm-1 for Li1.6AlCl3.4S0.6 at 25 degrees C. Structural refinement of the high-resolution XRD patterns and 6Li magic-angle-spinning (MAS) NMR quantitative analysis reveals the formation of tetrahedrally-coordinated, face- and edge-shared LiClxSy octahedra that facilitate 3D Li+ transport. Ab initio molecular dynamics (AIMD) simulations on Li1.6AlCl3.4S0.6 support an enhanced 3D network for Li+ migration with increased diffusivity. All-solid-state battery (ASSB) half-cells using Li1.6AlCl3.4S0.6 exhibit high-rate and long-term stable cycling performance. This work highlights the potential of Li1.6AlCl3.4S0.6 as a cost-effective and high-performance SE for ASSBs.
引用
收藏
页码:2391 / 2401
页数:11
相关论文
共 50 条
  • [31] Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design
    Yang, Xiaofei
    Luo, Jing
    Sun, Xueliang
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (07) : 2140 - 2195
  • [32] An asymmetric quasi-solid electrolyte for high-performance Li metal batteries
    Wang, Qian
    Wang, Hangchao
    Liu, Yong
    Wu, Kai
    Liu, Wen
    Zhou, Henghui
    CHEMICAL COMMUNICATIONS, 2020, 56 (52) : 7195 - 7198
  • [33] Unveiling Surface Chemistry of Ultrafast-Sintered LLZO Solid-State Electrolytes for High-Performance Li-Garnet Solid-State Batteries
    Zhang, Huanyu
    Klimpel, Matthias
    Wieczerzak, Krzysztof
    Dubey, Romain
    Okur, Faruk
    Michler, Johann
    Jeurgens, Lars P. H.
    Chernyshov, Dmitry
    van Beek, Wouter
    Kravchyk, Kostiantyn V.
    Kovalenko, Maksym V.
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11254 - 11263
  • [34] Rapid Li+ transport within the MOF-based composite solid electrolyte enables high-performance solid-state lithium-ion batteries
    Li, Shuang
    Chen, Yini
    Leng, Xiaolong
    Yang, Mingdai
    Ul, Arifeen Waqas
    Ko, Tae Jo
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [35] Author Correction: Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries
    Ruoqian Lin
    Yubin He
    Chunyang Wang
    Peichao Zou
    Enyuan Hu
    Xiao-Qing Yang
    Kang Xu
    Huolin L. Xin
    Nature Nanotechnology, 2022, 17 : 1024 - 1024
  • [36] High-performance solid-state metal-air batteries with an innovative dual-gel electrolyte
    Wang, Yifei
    Pan, Wending
    Luo, Shijing
    Zhao, Xiaolong
    Kwok, Holly Y. H.
    Xu, Xinhai
    Leung, Dennis Y. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (33) : 15024 - 15034
  • [37] A new strategy through polymer in situ ionization to construct high-performance electrolyte for solid-state batteries
    Chen, Ling
    Liu, Xiu
    Zang, Guojing
    Xie, Jinhao
    Wu, Binhong
    Zhang, Chi
    Xu, Ying
    Luo, Yuxin
    Yu, Dingshan
    Zhang, Zishou
    JOURNAL OF ENERGY CHEMISTRY, 2025, 105 : 814 - 822
  • [38] Uniting Young's modulus and the flexibility of solid-state electrolytes for high-performance Li-batteries at room temperature
    Zhao, Haitao
    Zhang, Yan
    Zhao, Zehua
    Xue, Zhuangzhuang
    Li, Lei
    DALTON TRANSACTIONS, 2023, 52 (46) : 17449 - 17457
  • [39] Low-Cost Fabrication of High Efficiency Solid-State Neutron Detectors
    Wu, Jia-Woei
    Huang, Kuan-Chih
    Weltz, Adam
    English, Erik
    Hella, Mona M.
    Dahal, Rajendra
    Lu, James J. -Q.
    Danon, Yaron
    Bhat, Ishwara B.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XVII, 2016, 9824
  • [40] High-performance lithium-sulfur batteries utilizing charged binder and solid-state ionogel electrolyte
    Heo, Jeong Mu
    Mun, Junyoung
    Lee, Keun Hyung
    MACROMOLECULAR RESEARCH, 2024, 32 (02) : 187 - 196