Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries

被引:41
|
作者
Li, Chenghan [1 ]
Zhou, Shi [1 ]
Dai, Lijie [1 ]
Zhou, Xuanyi [1 ]
Zhang, Biao [1 ]
Chen, Liwen [1 ]
Zeng, Tao [1 ]
Liu, Yating [1 ]
Tang, Yongfu [2 ]
Jiang, Jie [1 ]
Huang, Jianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTES; MECHANICAL-PROPERTIES; ORGANIC FRAMEWORK; ANODE; INTERFACES;
D O I
10.1039/d1ta04599g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) have attracted much attention due to their better safety and flexibility. However, the low ionic conductivity and narrow electrochemical window impede their applications in PEO-based solid-state batteries. Here we report the synthesis of a new SPE comprising PEO with 1 wt% fluoromethyl modified polyamine (PAN-FMP) as a filler that has high ionic conductivity and a wide electrochemical window. The LiFePO4 (LFP)/SPE/Li cell delivers an initial capacity of 124 mA h g(-1) at 1C with a capacity retention of 83% after 1000 cycles. Moreover, the electrochemical stability window of the SPE has been widened up to 4.8 V, which makes it compatible with high voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NMC811). The enhanced ionic conductivity of the SPE originates from the PAN-FMP filler rich in -CF3 groups that interact with ether oxygen on the PEO segment and make ether oxygen form loose ion pairs with Li+ ions, thus inhibiting the rearrangement and crystallization of PEO and enhancing Li+ ion transport of the SPE. The long cycle life of the full cell is attributed to the formation of a LiF-rich-solid electrolyte interface (SEI) layer due to PAN-FMP promoting the defluorination of TFSI-. The LiF SEI layer enables uniform lithium metal deposition, and prevents the growth of lithium dendrites. The low-cost, simple preparation method and superior electrochemical performance of the SPE with an organic PAN-FMP filler thus provide a new strategy to enable high voltage and high energy density polymer based solid-state batteries.
引用
收藏
页码:24661 / 24669
页数:9
相关论文
共 50 条
  • [1] PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries
    He, Lei
    Liang, Wei-Hua
    Cao, Jian-Hua
    Wu, Da-Yong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 5277 - 5286
  • [2] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [3] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Thamayanthi Panneerselvam
    Arunkumar Rajamani
    Narayanasamy Janani
    Ramaswamy Murugan
    Sivaraman Sivaprakasam
    Ionics, 2023, 29 : 1395 - 1406
  • [4] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Panneerselvam, Thamayanthi
    Rajamani, Arunkumar
    Janani, Narayanasamy
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    IONICS, 2023, 29 (04) : 1395 - 1406
  • [5] Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries
    Wang, Bingyao
    Wang, Guoxu
    He, Pingge
    Fan, Li-Zhen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 642
  • [6] Mechanical stable composite electrolyte for solid-state lithium metal batteries
    Zhao, Wenlong
    Wang, Huihui
    Dong, Qingyu
    Shao, Hui
    Zhang, Yanyan
    Tang, Yuxin
    Shen, Yanbin
    Chen, Liwei
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [7] Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance
    Zhang, Xiaobao
    Zhao, Huan
    Wang, Ning
    Xiao, Yiyang
    Liang, Shiang
    Yang, Juanyu
    Huang, Xiaowei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 658 : 836 - 845
  • [8] Polyoxyethylene (PEO)|PEO-Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries
    Liu, Ke
    Zhang, Ruihan
    Sun, Jing
    Wu, Maochun
    Zhao, Tianshou
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) : 46930 - 46937
  • [9] Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery
    Ren, Zhiheng
    Li, Jixiao
    Gong, Yangyang
    Shi, Chuan
    Liang, Jianneng
    Li, Yongliang
    He, Chuanxin
    Zhang, Qianling
    Ren, Xiangzhong
    ENERGY STORAGE MATERIALS, 2022, 51 : 130 - 138
  • [10] Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries
    Ma, Yuetao
    Wang, Chengrui
    Yang, Ke
    Li, Boyu
    Li, Yuhang
    Guo, Shaoke
    Lv, Jianshuai
    An, Xufei
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 17978 - 17985