Spectral estimation for mixed causal-noncausal autoregressive models

被引:0
|
作者
Hecq, Alain [1 ]
Velasquez-Gaviria, Daniel [1 ]
机构
[1] Maastricht Univ, Sch Business & Econ, Dept Quantitat Econ, POB 616, NL-6200 MD Maastricht, Netherlands
关键词
Autoregressive; commodity; cumulant; noncausal model; spectral density; C510; C530; C580; C140; MAXIMUM-LIKELIHOOD-ESTIMATION; PHASE; IDENTIFICATION;
D O I
10.1080/07474938.2025.2465372
中图分类号
F [经济];
学科分类号
02 ;
摘要
Mixed causal-noncausal autoregressive (MAR) processes driven by non Gaussian noise can replicate the non linear dynamics induced by local explosive episodes observed in financial bubbles. MAR models cannot be identified using second-order moments because they share spectral density with a set of different representations. In this study, we propose an identification and estimation method based on the third-order spectral density cumulant that can recover the complete probability structure of the errors without assuming any prior knowledge of the probability distribution function. Monte Carlo experiments demonstrated the estimation and identification performances. Furthermore, we illustrated the adequacy of our method through an empirical application to eight monthly commodity prices. The results show that MAR models can effectively capture the explosiveness and bubble phenomena generated in the commodities market.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] IMPROVING RESOLUTION FOR AUTOREGRESSIVE SPECTRAL ESTIMATION BY DECIMATION
    QUIRK, MP
    LIU, B
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (03): : 630 - 631
  • [42] AUTOREGRESSIVE SPECTRAL ESTIMATION IN TRANSITIONAL PULSATILE FLOW
    LIEBER, BB
    GIDDENS, DP
    EXPERIMENTS IN FLUIDS, 1989, 8 (3-4) : 209 - 215
  • [43] Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances
    Kelejian, Harry H.
    Prucha, Ingmar R.
    JOURNAL OF ECONOMETRICS, 2010, 157 (01) : 53 - 67
  • [44] Subspace-based parameter estimation of symmetric noncausal autoregressive signals from noisy measurements
    Uppsala Univ, Uppsala, Sweden
    IEEE Trans Signal Process, 2 (321-331):
  • [45] Cardinality estimation with smoothing autoregressive models
    Lin, Yuming
    Xu, Zejun
    Zhang, Yinghao
    Li, You
    Zhang, Jingwei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3441 - 3461
  • [46] Stable Autoregressive Models and Signal Estimation
    Balakrishna, N.
    Hareesh, G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (11) : 1969 - 1988
  • [47] On parameter estimation of threshold autoregressive models
    Ngai Hang Chan
    Yury A. Kutoyants
    Statistical Inference for Stochastic Processes, 2012, 15 (1) : 81 - 104
  • [48] Calculus of variations and regularized autoregressive spectral estimation
    Barbaresco, F
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 361 - 374
  • [49] Estimation of generalized threshold autoregressive models
    Zhang, Rongmao
    Liu, Qimeng
    Shi, Jianhua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (18) : 6456 - 6474
  • [50] EFFECT OF PERTURBATION ON ESTIMATION OF AUTOREGRESSIVE MODELS
    ROBERT, T
    MAILHES, C
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C5): : 1383 - 1386