Stable Autoregressive Models and Signal Estimation

被引:2
|
作者
Balakrishna, N. [1 ]
Hareesh, G. [2 ]
机构
[1] Cochin Univ Sci & Technol, Dept Stat, Cochin 682022, Kerala, India
[2] Inst Syst Studies & Anal, Delhi, India
关键词
Extended Yule Walker estimation; Model identification; Partial auto-covariation; Signal estimation; Stable autoregressive model; INFINITE VARIANCE; MOVING AVERAGES; ORDER; PARAMETERS;
D O I
10.1080/03610926.2011.552832
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies the problem of model identification and estimation for stable autoregressive process observed in a symmetric stable noise environment. A new tool called partial auto-covariation function is introduced to identify the stable autoregressive signals. The signal and noise parameters are estimated using a modified version of Generalized Yule Walker type method and the method of moments. The proposed methods are illustrated through data simulated from autoregressive signals with symmetric stable innovations. The new technique is applied to analyze the time series of sea surface temperature anomaly and compared with its Gaussian counterpart.
引用
收藏
页码:1969 / 1988
页数:20
相关论文
共 50 条
  • [1] Maximum likelihood estimation for α-stable double autoregressive models
    Li, Dong
    Tao, Yuxin
    Yang, Yaxing
    Zhang, Rongmao
    JOURNAL OF ECONOMETRICS, 2023, 236 (01)
  • [2] ESTIMATION OF MODELS OF AUTOREGRESSIVE SIGNAL PLUS WHITE NOISE
    PAGANO, M
    PARZEN, E
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2169 - &
  • [3] ESTIMATION OF MODELS OF AUTOREGRESSIVE SIGNAL PLUS WHITE NOISE
    PAGANO, M
    ANNALS OF STATISTICS, 1974, 2 (01): : 99 - 108
  • [4] ABOUT ESTIMATION OF THE AUTOREGRESSIVE PART FOR STABLE MULTIDIMENSIONAL ARMA MODELS
    DELLAGI, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (11): : 883 - 886
  • [5] Tempered stable autoregressive models
    Bhootna, Niharika
    Kumar, Arun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 765 - 785
  • [6] Estimation of time-varying autoregressive stochastic volatility models with stable innovations
    Gernot Müller
    Sebastian Uhl
    Statistics and Computing, 2021, 31
  • [7] Estimation of time-varying autoregressive stochastic volatility models with stable innovations
    Mueller, Gernot
    Uhl, Sebastian
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [8] Sampling Requirements for Stable Autoregressive Estimation
    Kazemipour, Abbas
    Miran, Sina
    Pal, Piya
    Babadi, Behtash
    Wu, Min
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (09) : 2333 - 2347
  • [9] Autoregressive functions estimation in nonlinear bifurcating autoregressive models
    Bitseki Penda S.V.
    Olivier A.
    Statistical Inference for Stochastic Processes, 2017, 20 (2) : 179 - 210
  • [10] Autoregressive models for biomedical signal processing
    Haderlein, Jonas F.
    Peterson, Andre D. H.
    Burkitt, Anthony N.
    Mareels, Iven M. Y.
    Grayden, David B.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,