Spectral estimation for mixed causal-noncausal autoregressive models

被引:0
|
作者
Hecq, Alain [1 ]
Velasquez-Gaviria, Daniel [1 ]
机构
[1] Maastricht Univ, Sch Business & Econ, Dept Quantitat Econ, POB 616, NL-6200 MD Maastricht, Netherlands
关键词
Autoregressive; commodity; cumulant; noncausal model; spectral density; C510; C530; C580; C140; MAXIMUM-LIKELIHOOD-ESTIMATION; PHASE; IDENTIFICATION;
D O I
10.1080/07474938.2025.2465372
中图分类号
F [经济];
学科分类号
02 ;
摘要
Mixed causal-noncausal autoregressive (MAR) processes driven by non Gaussian noise can replicate the non linear dynamics induced by local explosive episodes observed in financial bubbles. MAR models cannot be identified using second-order moments because they share spectral density with a set of different representations. In this study, we propose an identification and estimation method based on the third-order spectral density cumulant that can recover the complete probability structure of the errors without assuming any prior knowledge of the probability distribution function. Monte Carlo experiments demonstrated the estimation and identification performances. Furthermore, we illustrated the adequacy of our method through an empirical application to eight monthly commodity prices. The results show that MAR models can effectively capture the explosiveness and bubble phenomena generated in the commodities market.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Coding causal-noncausal verb alternations: A form-frequency correspondence explanation
    Haspelmath, Martin
    Calude, Andreea
    Spagnol, Michael
    Narrog, Heiko
    Bamyaci, Elif
    JOURNAL OF LINGUISTICS, 2014, 50 (03) : 587 - 625
  • [12] A COMPARATIVE-STUDY OF CAUSAL AND NONCAUSAL MODELS FOR MULTIDIMENSIONAL SPECTRUM ESTIMATION
    KROGMEIER, JV
    ARUN, KS
    TWENTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2: CONFERENCE RECORD, 1989, : 1056 - 1060
  • [13] Testing for a Unit Root in Noncausal Autoregressive Models
    Saikkonen, Pentti
    Sandberg, Rickard
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (01) : 99 - 125
  • [14] MAXIMUM-LIKELIHOOD-ESTIMATION FOR NONCAUSAL AUTOREGRESSIVE PROCESSES
    BREIDT, FJ
    DAVIS, RA
    LII, KS
    ROSENBLATT, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) : 175 - 198
  • [15] BAYESIAN MODEL SELECTION AND FORECASTING IN NONCAUSAL AUTOREGRESSIVE MODELS
    Lanne, Markku
    Luoma, Arto
    Luoto, Jani
    JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (05) : 812 - 830
  • [16] CONSISTENT PARAMETER-ESTIMATION FOR NONCAUSAL AUTOREGRESSIVE MODELS VIA HIGHER-ORDER STATISTICS
    TUGNAIT, JK
    AUTOMATICA, 1990, 26 (01) : 51 - 61
  • [17] Inference in mixed causal and noncausal models with generalized Student's t-distributions
    Giancaterini, Francesco
    Hecq, Alain
    ECONOMETRICS AND STATISTICS, 2025, 33 : 1 - 12
  • [18] Selecting between causal and noncausal models with quantile autoregressions
    Hecq, Alain
    Sun, Li
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2021, 25 (05): : 393 - 416
  • [19] Bayesian autoregressive spectral estimation
    Cuevas, Alejandro
    Lopez, Sebastian
    Mandic, Danilo
    Tobar, Felipe
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [20] TEXTURE SYNTHESIS USING 2-D NONCAUSAL AUTOREGRESSIVE MODELS
    CHELLAPPA, R
    KASHYAP, RL
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (01): : 194 - 203