Spectral estimation for mixed causal-noncausal autoregressive models

被引:0
|
作者
Hecq, Alain [1 ]
Velasquez-Gaviria, Daniel [1 ]
机构
[1] Maastricht Univ, Sch Business & Econ, Dept Quantitat Econ, POB 616, NL-6200 MD Maastricht, Netherlands
关键词
Autoregressive; commodity; cumulant; noncausal model; spectral density; C510; C530; C580; C140; MAXIMUM-LIKELIHOOD-ESTIMATION; PHASE; IDENTIFICATION;
D O I
10.1080/07474938.2025.2465372
中图分类号
F [经济];
学科分类号
02 ;
摘要
Mixed causal-noncausal autoregressive (MAR) processes driven by non Gaussian noise can replicate the non linear dynamics induced by local explosive episodes observed in financial bubbles. MAR models cannot be identified using second-order moments because they share spectral density with a set of different representations. In this study, we propose an identification and estimation method based on the third-order spectral density cumulant that can recover the complete probability structure of the errors without assuming any prior knowledge of the probability distribution function. Monte Carlo experiments demonstrated the estimation and identification performances. Furthermore, we illustrated the adequacy of our method through an empirical application to eight monthly commodity prices. The results show that MAR models can effectively capture the explosiveness and bubble phenomena generated in the commodities market.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] LOSS OF SPECTRAL PEAKS IN AUTOREGRESSIVE SPECTRAL ESTIMATION
    LYSNE, D
    TJOSTHEIM, D
    BIOMETRIKA, 1987, 74 (01) : 200 - 206
  • [22] HIGHER-ORDER SPECTRUM ESTIMATION VIA NONCAUSAL AUTOREGRESSIVE MODELING AND DECONVOLUTION
    NIKIAS, CL
    CHIANG, HH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (12): : 1911 - 1913
  • [23] Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation
    Gourieroux, Christian
    Jasiak, Joann
    JOURNAL OF ECONOMETRICS, 2017, 200 (01) : 118 - 134
  • [24] Adaptive Estimation of Causal Periodic Autoregressive Model
    Bentarzi, M.
    Guerbyenne, H.
    Merzougui, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (08) : 1592 - 1609
  • [25] Causal Forecasting: Generalization Bounds for Autoregressive Models
    Vankadara, Leena Chennuru
    Faller, Philipp Michael
    Hardt, Michaela
    Minorics, Lenon
    Ghoshdastidar, Debarghya
    Janzing, Dominik
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2002 - 2012
  • [26] On frequency weighting in autoregressive spectral estimation
    Blomqvist, A
    Wahlberg, B
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 245 - 248
  • [27] A recursive autoregressive method for spectral estimation
    Bouzerdoum, A
    Kim, J
    ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 312 - 313
  • [28] Autoregressive spectral estimation with application to telephony
    Goujdami, L.
    Es Said, B.Ait
    Ouahman, A.Ait
    Allaki, S.
    Advances in Modelling and Analysis B, 1997, 37 (02): : 17 - 25
  • [29] AUTOREGRESSIVE SPECTRAL ESTIMATION IN ADDITIVE NOISE
    GINGRAS, DF
    MASRY, E
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (04): : 490 - 501
  • [30] A NEW CUMULANT-BASED PARAMETER-ESTIMATION METHOD FOR NONCAUSAL AUTOREGRESSIVE SYSTEMS
    CHI, CY
    HWANG, JL
    RAU, CF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (09) : 2524 - 2527