Some approximation properties in fractional Musielak-Sobolev spaces

被引:0
|
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Sobolev embeddings in Musielak-Orlicz spaces
    Cianchi, Andrea
    Diening, Lars
    ADVANCES IN MATHEMATICS, 2024, 447
  • [32] Musielak-Orlicz-Sobolev spaces on metric measure spaces
    Takao Ohno
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2015, 65 : 435 - 474
  • [33] Musielak-Orlicz-Sobolev spaces on metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 435 - 474
  • [34] Some properties of anisotropic Sobolev spaces
    Secchi, P
    ARCHIV DER MATHEMATIK, 2000, 75 (03) : 207 - 216
  • [35] ON SOME CONVERGENCE RESULTS FOR FRACTIONAL PERIODIC SOBOLEV SPACES
    Ambrosio, Vincenzo
    OPUSCULA MATHEMATICA, 2020, 40 (01) : 5 - 20
  • [36] On Some Nonlinear Elliptic Problems with Large Monotonocity in Musielak-Orlicz-Sobolev Spaces
    Azraibi, Ouidad
    El Haji, Badr
    Mekkour, Mounir
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (03) : 332 - 349
  • [37] On Some properties of fractionnal Sobolev Spaces
    Raman, Jean-Francois
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2006, 33 : 216 - 226
  • [38] Some properties of anisotropic Sobolev spaces
    P. Secchi
    Archiv der Mathematik, 2000, 75 : 207 - 216
  • [39] Variational inequalities in Musielak-Orlicz-Sobolev spaces
    Benkirane, A.
    El Vally, M. Sidi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) : 787 - 811
  • [40] PARABOLIC EQUATIONS IN MUSIELAK-ORLICZ-SOBOLEV SPACES
    Oubeid, M. L. Ahmed
    Benkirane, A.
    El Vally, M. Sidi
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 4 (02): : 174 - 191