Sobolev embeddings in Musielak-Orlicz spaces

被引:2
|
作者
Cianchi, Andrea [1 ]
Diening, Lars [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
关键词
Musielak-Orlicz spaces; Sobolev inequalities; Generalized Young functions; Riesz potentials; VARIABLE EXPONENT; INEQUALITIES; LEBESGUE; THEOREM;
D O I
10.1016/j.aim.2024.109679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the x variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed x , it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole R n and Sobolev-Poincar & eacute; inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double -phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional -order Sobolev conjugate. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC -ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [2] Sharp conditions for the compactness of the Sobolev embedding on Musielak-Orlicz spaces
    Lang, Jan
    Mendez, Osvaldo
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (02) : 377 - 388
  • [3] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [4] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [5] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [6] Musielak-Orlicz Campanato Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 145 - 166
  • [7] Weighted Sobolev inequality in Musielak-Orlicz space
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 86 - 97
  • [8] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [9] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [10] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898