Sobolev embeddings in Musielak-Orlicz spaces

被引:2
|
作者
Cianchi, Andrea [1 ]
Diening, Lars [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
关键词
Musielak-Orlicz spaces; Sobolev inequalities; Generalized Young functions; Riesz potentials; VARIABLE EXPONENT; INEQUALITIES; LEBESGUE; THEOREM;
D O I
10.1016/j.aim.2024.109679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the x variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed x , it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole R n and Sobolev-Poincar & eacute; inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double -phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional -order Sobolev conjugate. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC -ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:51
相关论文
共 50 条
  • [41] Strongly Extreme Points in Musielak-Orlicz Spaces with the Orlicz Norm
    Wang, Ping
    Yu, FeiFei
    Cvi, Yunan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (02): : 223 - 232
  • [42] Amemiya norm equals Orlicz norm in Musielak-Orlicz spaces
    Fan, Xian Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 281 - 288
  • [43] Martingale inequalities on Musielak-Orlicz Hardy spaces
    He, Lechen
    Peng, Lihua
    Xie, Guangheng
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5171 - 5189
  • [44] UGD property of Musielak-Orlicz sequence spaces
    Wang Ting-fu
    Ji Dong-hai
    Cao Lian-ying
    Applied Mathematics and Mechanics, 2003, 24 (2) : 196 - 207
  • [45] Some Approximation Results in Musielak-Orlicz Spaces
    Ahmed Youssfi
    Youssef Ahmida
    Czechoslovak Mathematical Journal, 2020, 70 : 453 - 471
  • [46] UGD PROPERTY OF MUSIELAK-ORLICZ SEQUENCE SPACES
    王廷辅
    计东海
    曹连英
    AppliedMathematicsandMechanics(EnglishEdition), 2003, (02) : 196 - 207
  • [47] Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
  • [48] Boundary limits of monotone Sobolev functions in Musielak-Orlicz spaces on uniform domains in a metric space
    Ohno, Takao
    Shimomura, Tetsu
    KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (01) : 147 - 164
  • [49] Dual spaces for martingale Musielak-Orlicz Lorentz Hardy spaces
    Weisz, Ferenc
    Xie, Guangheng
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [50] On the convexity coefficient of Musielak-Orlicz function spaces equipped with the Orlicz norm
    Guo, Tianbao
    Cui, Yunan
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3344 - 3353