Sobolev embeddings in Musielak-Orlicz spaces

被引:2
|
作者
Cianchi, Andrea [1 ]
Diening, Lars [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
关键词
Musielak-Orlicz spaces; Sobolev inequalities; Generalized Young functions; Riesz potentials; VARIABLE EXPONENT; INEQUALITIES; LEBESGUE; THEOREM;
D O I
10.1016/j.aim.2024.109679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the x variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed x , it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole R n and Sobolev-Poincar & eacute; inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double -phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional -order Sobolev conjugate. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC -ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:51
相关论文
共 50 条
  • [21] Sobolev inequalities for Musielak–Orlicz spaces
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    manuscripta mathematica, 2018, 155 : 209 - 227
  • [22] Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces
    Manna, Atanu
    Srivastava, P. D.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 471 - 486
  • [23] ISOMETRIES OF MUSIELAK-ORLICZ SPACES .2.
    JAMISON, JE
    KAMINSKA, A
    LIN, PK
    STUDIA MATHEMATICA, 1993, 104 (01) : 75 - 89
  • [24] Capacity for potentials of functions in Musielak-Orlicz spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6231 - 6243
  • [25] WEIGHTED COMPOSITION OPERATORS ON MUSIELAK-ORLICZ SPACES
    Raj, Kuldip
    Sharma, Ajay K.
    Kumar, Anil
    ARS COMBINATORIA, 2012, 107 : 431 - 439
  • [26] Pointwise multipliers of Musielak-Orlicz spaces and factorization
    Lesnik, Karol
    Tomaszewski, Jakub
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (02): : 489 - 509
  • [27] Nonlinear parabolic problems in Musielak-Orlicz spaces
    Swierczewska-Gwiazda, Agnieszka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 : 48 - 65
  • [28] Summability in Anisotropic Musielak-Orlicz Hardy Spaces
    Ruan, Jiashuai
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 991 - 1006
  • [29] On approximation by rational functions in Musielak-Orlicz spaces
    Kozlowski, Wojciech M.
    Vinti, Gianluca
    JOURNAL OF APPROXIMATION THEORY, 2024, 304
  • [30] Density of smooth functions in Musielak-Orlicz spaces
    Kaminska, Anna
    Zyluk, Mariusz
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)