Some approximation properties in fractional Musielak-Sobolev spaces

被引:0
|
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] ON EIGENMODE APPROXIMATION FOR DIRAC EQUATIONS: DIFFERENTIAL FORMS AND FRACTIONAL SOBOLEV SPACES
    Christiansen, Snorre H.
    MATHEMATICS OF COMPUTATION, 2018, 87 (310) : 547 - 580
  • [42] THE WAVELET TRANSFORM ON SOBOLEV SPACES AND ITS APPROXIMATION PROPERTIES
    RIEDER, A
    NUMERISCHE MATHEMATIK, 1991, 58 (08) : 875 - 894
  • [43] APPROXIMATION PROPERTIES IN SOBOLEV SPACES OF ORTHOGONAL POLYNOMIAL SYSTEMS
    CANUTO, C
    QUARTERONI, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (19): : 925 - 928
  • [44] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Baalal, Azeddine
    Berghout, Mohamed
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) : 308 - 324
  • [45] Density properties for Orlicz Sobolev spaces with fractional order
    Baalal, Azeddine
    El Wazna, Achraf
    Zaoui, Mohamed Amine
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (04) : 1715 - 1730
  • [46] On some geometric properties in Musielak-Orlicz sequence spaces
    Cui, YN
    Thompson, HB
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 149 - 157
  • [47] Some results of capacity in fractional Sobolev spaces with variable exponents
    Youssef Akdim
    Rachid Elharch
    M. C. Hassib
    Soumia Lalaoui Rhali
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 93 - 106
  • [48] Some results of capacity in fractional Sobolev spaces with variable exponents
    Akdim, Youssef
    Elharch, Rachid
    Hassib, M. C.
    Rhali, Soumia Lalaoui
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 93 - 106
  • [49] SOME RESULTS FOR THE FRACTIONAL INTEGRAL OPERATOR DEFINED ON THE SOBOLEV SPACES
    Gurdal, Mehmet
    Nabiev, Anar Adiloglu
    Ayyildiz, Meral
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 173 - 184
  • [50] SOME PROPERTIES OF LOEB-SOBOLEV SPACES
    ARKERYD, L
    BERGH, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 : 317 - 334