Some approximation properties in fractional Musielak-Sobolev spaces

被引:0
|
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Pointwise inequalities and approximation in fractional Sobolev spaces
    Swanson, D
    STUDIA MATHEMATICA, 2002, 149 (02) : 147 - 174
  • [22] Some Approximation Results in Musielak-Orlicz Spaces
    Youssfi, Ahmed
    Ahmida, Youssef
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 453 - 471
  • [23] Some Approximation Results in Musielak-Orlicz Spaces
    Ahmed Youssfi
    Youssef Ahmida
    Czechoslovak Mathematical Journal, 2020, 70 : 453 - 471
  • [24] Sobolev inequalities for Musielak–Orlicz spaces
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    manuscripta mathematica, 2018, 155 : 209 - 227
  • [25] Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators
    Cantarini, Marco
    Costarelli, Danilo
    Vinti, Gianluca
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2493 - 2521
  • [26] Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators
    Marco Cantarini
    Danilo Costarelli
    Gianluca Vinti
    Fractional Calculus and Applied Analysis, 2023, 26 : 2493 - 2521
  • [27] Existence results of non-local integro-differential problem with singularity under a new fractional Musielak-Sobolev space*
    Cheng, Yu
    Bai, Zhanbing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (04)
  • [28] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 235 - 253
  • [29] Some properties of Sobolev spaces
    Borghol, Rouba
    ASYMPTOTIC ANALYSIS, 2007, 51 (3-4) : 303 - 318
  • [30] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227