Physics-Informed Neural Networks for Unmanned Aerial Vehicle System Estimation

被引:2
|
作者
Bianchi, Domenico [1 ,2 ]
Epicoco, Nicola [2 ,3 ]
Di Ferdinando, Mario [1 ,2 ]
Di Gennaro, Stefano [1 ,2 ]
Pepe, Pierdomenico [1 ,2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
[2] Univ Aquila, Ctr Ric Eccellenza DEWS, Via Vetotio, I-67100 Laquila, Italy
[3] LUM Libera Univ Mediterranea Giuseppe Degennaro, Dept Engn, Str Statale 100 Km 18, I-70010 Casamassima Bari, Italy
关键词
quadrotor control; system identification; Physics-Informed Neural Networks; IDENTIFICATION;
D O I
10.3390/drones8120716
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The dynamic nature of quadrotor flight introduces significant uncertainty in system parameters, such as thrust and drag factors. Consequently, operators grapple with escalating challenges in implementing real-time control actions. This study presents an approach for estimating the dynamic model of Unmanned Aerial Vehicles based on Physics-Informed Neural Networks (PINNs), which is of paramount importance due to the presence of uncertain data and since control actions are required in very short computation times. In this regard, by including physical laws into neural networks, PINNs offer the potential to tackle several issues, such as heightened non-linearities in low-inertia systems, elevated measurement noise, and constraints on data availability or uncertainties, while ensuring the robustness of the solution, thus ensuring effective results in short time, once the network training has been performed and without the need to be retrained. The effectiveness of the proposed method is showcased in a simulation environment with real data and juxtaposed with a state-of-the-art technique, such as the Extended Kalman Filter (EKF). The results show that the proposed estimator outperforms the EKF both in terms of the efficacy of the solution and computation time.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [12] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [13] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [14] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [15] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [16] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [17] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [18] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [19] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [20] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59