Physics-Informed Neural Networks for Unmanned Aerial Vehicle System Estimation

被引:2
|
作者
Bianchi, Domenico [1 ,2 ]
Epicoco, Nicola [2 ,3 ]
Di Ferdinando, Mario [1 ,2 ]
Di Gennaro, Stefano [1 ,2 ]
Pepe, Pierdomenico [1 ,2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
[2] Univ Aquila, Ctr Ric Eccellenza DEWS, Via Vetotio, I-67100 Laquila, Italy
[3] LUM Libera Univ Mediterranea Giuseppe Degennaro, Dept Engn, Str Statale 100 Km 18, I-70010 Casamassima Bari, Italy
关键词
quadrotor control; system identification; Physics-Informed Neural Networks; IDENTIFICATION;
D O I
10.3390/drones8120716
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The dynamic nature of quadrotor flight introduces significant uncertainty in system parameters, such as thrust and drag factors. Consequently, operators grapple with escalating challenges in implementing real-time control actions. This study presents an approach for estimating the dynamic model of Unmanned Aerial Vehicles based on Physics-Informed Neural Networks (PINNs), which is of paramount importance due to the presence of uncertain data and since control actions are required in very short computation times. In this regard, by including physical laws into neural networks, PINNs offer the potential to tackle several issues, such as heightened non-linearities in low-inertia systems, elevated measurement noise, and constraints on data availability or uncertainties, while ensuring the robustness of the solution, thus ensuring effective results in short time, once the network training has been performed and without the need to be retrained. The effectiveness of the proposed method is showcased in a simulation environment with real data and juxtaposed with a state-of-the-art technique, such as the Extended Kalman Filter (EKF). The results show that the proposed estimator outperforms the EKF both in terms of the efficacy of the solution and computation time.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [22] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [23] Physics-informed graphical neural network for power system state estimation
    Ngo, Quang-Ha
    Nguyen, Bang L. H.
    Vu, Tuyen V.
    Zhang, Jianhua
    Ngo, Tuan
    APPLIED ENERGY, 2024, 358
  • [24] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [25] Thermal conductivity estimation using Physics-Informed Neural Networks with limited data
    Jo, Junhyoung
    Jeong, Yeonhwi
    Kim, Jinsu
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [26] Capturing Power System Dynamics by Physics-Informed Neural Networks and Optimization
    Misyris, Georgios S.
    Stiasny, Jochen
    Chatzivasileiadis, Spyros
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4418 - 4423
  • [27] Certified machine learning: A posteriori error estimation for physics-informed neural networks
    Hillebrecht, Birgit
    Unger, Benjamin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [28] Physics-Informed Neural Networks-Based Online Excavation Trajectory Planning for Unmanned Excavator
    Tao Fu
    Zhengguo Hu
    Tianci Zhang
    Qiushi Bi
    Xueguan Song
    Chinese Journal of Mechanical Engineering, 2024, 37 (05) : 351 - 367
  • [29] Physics-Informed Neural Networks-Based Online Excavation Trajectory Planning for Unmanned Excavator
    Fu, Tao
    Hu, Zhengguo
    Zhang, Tianci
    Bi, Qiushi
    Song, Xueguan
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2024, 37 (01)
  • [30] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30