Percolation renormalization group analysis of confinement in Z2 lattice gauge theories

被引:0
|
作者
Duennweber, Gesa [1 ,2 ,3 ,4 ]
Linsel, Simon M. [1 ,2 ,5 ]
Bohrdt, Annabelle [2 ,6 ]
Grusdt, Fabian [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Dept Phys, James-Franck-Str 1, D-85748 Garching, Germany
[4] Bayer Akad Wissensch, Walther Meissner Inst, Walther Meissner Str. 8, D-85748 Garching, Germany
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Univ Regensburg, Inst Theoret Phys, Univ Str 31, D-93053 Regensburg, Germany
基金
欧洲研究理事会;
关键词
REAL-SPACE RENORMALIZATION; QUARK CONFINEMENT; BOND PERCOLATION; SITE; PROBABILITIES; STATES; ORDER;
D O I
10.1103/PhysRevB.111.024314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z(2) LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical Z(2) LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at T < infinity in the model we consider. Our RG scheme enables future analytical studies of Z(2) LGTs with matter and quantum fluctuations and beyond.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Z2 monopole of Spin(10) gauge theories
    Su, WC
    PHYSICAL REVIEW D, 1998, 57 (08): : 5100 - 5107
  • [22] CHARGED STATES IN Z2 GAUGE-THEORIES
    FREDENHAGEN, K
    MARCU, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 92 (01) : 81 - 119
  • [23] ROUGHENING TRANSITION IN LATTICE GAUGE-THEORIES IN ARBITRARY DIMENSION .19 THE Z2 CASE
    DROUFFE, JM
    ZUBER, JB
    NUCLEAR PHYSICS B, 1981, 180 (02) : 253 - 263
  • [24] Confinement and renormalization group equations in string-inspired nonlocal gauge theories
    Frasca, Marco
    Ghoshal, Anish
    Okada, Nobuchika
    PHYSICAL REVIEW D, 2021, 104 (09)
  • [25] Soluble limit and criticality of fermions in Z2 gauge theories
    Koenig, Elio J.
    Coleman, Piers
    Tsvelik, Alexei M.
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [26] GAUGE SPINS FOR THE RENORMALIZATION OF LATTICE GAUGE-THEORIES
    PETRONZIO, R
    PHYSICS LETTERS B, 1989, 224 (03) : 329 - 332
  • [27] Z2 lattice gauge theories and Kitaev's toric code: A scheme for analog quantum simulation
    Homeier, Lukas
    Schweizer, Christian
    Aidelsburger, Monika
    Fedorov, Arkady
    Grusdt, Fabian
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [28] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [29] Dependent percolation on Z2
    de Lima, Bernardo N. B.
    Sidoravicius, Vladas
    Vares, Maria Eulalia
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (02) : 431 - 454
  • [30] Wilson renormalization group for gauge theories
    Bonini, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 1847 - 1859