Percolation renormalization group analysis of confinement in Z2 lattice gauge theories

被引:0
|
作者
Duennweber, Gesa [1 ,2 ,3 ,4 ]
Linsel, Simon M. [1 ,2 ,5 ]
Bohrdt, Annabelle [2 ,6 ]
Grusdt, Fabian [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Dept Phys, James-Franck-Str 1, D-85748 Garching, Germany
[4] Bayer Akad Wissensch, Walther Meissner Inst, Walther Meissner Str. 8, D-85748 Garching, Germany
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Univ Regensburg, Inst Theoret Phys, Univ Str 31, D-93053 Regensburg, Germany
基金
欧洲研究理事会;
关键词
REAL-SPACE RENORMALIZATION; QUARK CONFINEMENT; BOND PERCOLATION; SITE; PROBABILITIES; STATES; ORDER;
D O I
10.1103/PhysRevB.111.024314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z(2) LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical Z(2) LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at T < infinity in the model we consider. Our RG scheme enables future analytical studies of Z(2) LGTs with matter and quantum fluctuations and beyond.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z2 lattice gauge theories
    Barbiero, Luca
    Schweizer, Christian
    Aidelsburger, Monika
    Demler, Eugene
    Goldman, Nathan
    Grusdt, Fabian
    SCIENCE ADVANCES, 2019, 5 (10)
  • [32] Z2 x Z2 lattice as a Connes-Lott-quantum group model
    Majid, S
    Schücker, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (01) : 1 - 26
  • [33] Z(2) MONOPOLES IN LATTICE GAUGE-THEORIES
    HALLIDAY, IG
    SCHWIMMER, A
    PHYSICS LETTERS B, 1981, 102 (05) : 337 - 340
  • [34] FINITE-TEMPERATURE ANALYSIS OF SU(2)/Z2 LATTICE GAUGE-THEORY
    BURDEN, CJ
    NUCLEAR PHYSICS B, 1985, 257 (05) : 663 - 694
  • [35] Realistic scheme for quantum simulation of Z2 lattice gauge theories with dynamical matter in (2+1)D
    Homeier, Lukas
    Bohrdt, Annabelle
    Linsel, Simon
    Demler, Eugene
    Halimeh, Jad C. C.
    Grusdt, Fabian
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [36] Confinement transition of Z2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and SO(5) symmetry
    Gazit, Snir
    Assaad, Fakher F.
    Sachdev, Subir
    Vishwanath, Ashvin
    Wang, Chong
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (30) : E6987 - E6995
  • [38] LINEARIZATION OF Z2 LATTICE GAUGE-THEORY IN 4 DIMENSIONS
    FOERSTER, D
    UKAWA, A
    PHYSICS LETTERS B, 1982, 113 (01) : 51 - 56
  • [39] The renormalization group equation in N=2 supersymmetric gauge theories
    DHoker, E
    Krichever, IM
    Phong, DH
    NUCLEAR PHYSICS B, 1997, 494 (1-2) : 89 - 104
  • [40] Quantum simulation of Z2 lattice gauge theory with minimal resources
    Irmejs, Reinis
    Banuls, Mari-Carmen
    Cirac, J. Ignacio
    PHYSICAL REVIEW D, 2023, 108 (07)