Percolation renormalization group analysis of confinement in Z2 lattice gauge theories

被引:0
|
作者
Duennweber, Gesa [1 ,2 ,3 ,4 ]
Linsel, Simon M. [1 ,2 ,5 ]
Bohrdt, Annabelle [2 ,6 ]
Grusdt, Fabian [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Dept Phys, James-Franck-Str 1, D-85748 Garching, Germany
[4] Bayer Akad Wissensch, Walther Meissner Inst, Walther Meissner Str. 8, D-85748 Garching, Germany
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Univ Regensburg, Inst Theoret Phys, Univ Str 31, D-93053 Regensburg, Germany
基金
欧洲研究理事会;
关键词
REAL-SPACE RENORMALIZATION; QUARK CONFINEMENT; BOND PERCOLATION; SITE; PROBABILITIES; STATES; ORDER;
D O I
10.1103/PhysRevB.111.024314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z(2) LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical Z(2) LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at T < infinity in the model we consider. Our RG scheme enables future analytical studies of Z(2) LGTs with matter and quantum fluctuations and beyond.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Investigation of the critical behavior of the critical point of the Z2 gauge lattice
    Blum, Y
    Coyle, PK
    Elitzur, S
    Rabinovici, E
    Rubinstein, H
    Solomon, S
    NUCLEAR PHYSICS B, 1998, 535 (03) : 731 - 738
  • [42] Z2 GAUGE-MODEL ON THE TRUNCATED-TETRAHEDRON LATTICE
    CAMPESINOROMEO, E
    DOLIVO, JC
    SOCOLOVSKY, M
    LETTERE AL NUOVO CIMENTO, 1982, 33 (02): : 52 - 56
  • [43] CONTINUUM-LIMIT OF A Z2 LATTICE GAUGE-THEORY
    BREZIN, E
    DROUFFE, JM
    NUCLEAR PHYSICS B, 1982, 200 (01) : 93 - 106
  • [44] Emergent statistical bubble localization in a Z2 lattice gauge theory
    Yarloo, H.
    Mohseni-Rajaee, M.
    Langari, A.
    PHYSICAL REVIEW B, 2019, 99 (05)
  • [47] Simulating Z2 lattice gauge theory with the variational quantum thermalizer
    Fromm, Michael
    Philipsen, Owe
    Spannowsky, Michael
    Winterowd, Christopher
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [48] Z2 gauge theory for valence bond solids on the kagome lattice
    Hwang, Kyusung
    Huh, Yejin
    Kim, Yong Baek
    PHYSICAL REVIEW B, 2015, 92 (20):
  • [49] Fractional vortices, Z2 gauge theory, and the confinement-deconfinement transition
    Gao, Zhi-Qiang
    Huang, Yen-Ta
    Lee, Dung-Hai
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [50] A Lorentzian Renormalization Group Equation for Gauge Theories
    D'Angelo, Edoardo
    Rejzner, Kasia
    ANNALES HENRI POINCARE, 2025,