Dependent percolation on Z2

被引:2
|
作者
de Lima, Bernardo N. B. [1 ]
Sidoravicius, Vladas [2 ]
Vares, Maria Eulalia [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, Av Antonio Carlos 6627, BR-30123970 Belo Horizonte, MG, Brazil
[2] Shanghai New York Univ, Shanghai, Peoples R China
[3] Univ Fed Rio De Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
Dependent percolation; multiscale renormalization; random environment; 2-DIMENSIONAL ISING-MODEL; RANDOM IMPURITIES;
D O I
10.1214/23-BJPS575
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a dependent percolation model on the square lattice Z2. The range of dependence is infinite in vertical and horizontal directions. In this context, we prove the existence of a phase transition. The proof exploits a multi-scale renormalization argument that is defined once the environment configuration is suitably good and, which, together with the main estimate for the induction step, comes from Kesten, Sidoravicius and Vares (Electronic Journal of Probability 27 (2022) 1-49). This paper is inspired where the simpler case of a deterministic environment was considered. It has various applications, including an alternative proof for the phase transition on the two dimensional random stretched lattice proved by Hoffman (Comm. Math. Phys. 254 (2005) 1-22).
引用
收藏
页码:431 / 454
页数:24
相关论文
共 50 条
  • [1] SCALING OF THE PERCOLATION OF RANDOM FIELD ON Z2
    STEPANOV, AK
    DOKLADY AKADEMII NAUK SSSR, 1988, 300 (04): : 814 - 818
  • [2] Energy of flows on Z2 percolation clusters
    Hoffman, C
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (02) : 143 - 155
  • [3] Does Eulerian percolation on Z2 percolate?
    Garet, Olivier
    Marchand, Regine
    Marcovici, Irene
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 279 - 294
  • [4] On the truncated long-range percolation on Z2
    Borges De Lima, Bernardo Nunes
    Sapozhnikov, Artem
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (01) : 287 - 291
  • [5] Corner percolation on Z2 and the square root of 17
    Pete, Gabor
    ANNALS OF PROBABILITY, 2008, 36 (05): : 1711 - 1747
  • [6] Critical scaling for an anisotropic percolation system on Z2
    Mountford, Thomas
    Vares, Maria Eulalia
    Xue, Hao
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 44
  • [7] 1-independent percolation on Z2 x Kn
    Falgas-Ravry, Victor
    Pfenninger, Vincent
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 887 - 910
  • [8] On the truncated anisotropic long-range percolation on Z2
    Sidoravicius, V
    Surgailis, D
    Vares, ME
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (02) : 337 - 349
  • [9] Universal moduli-dependent string thresholds in Z2 x Z2 orbifolds
    Petropoulos, P. M.
    Rizos, J.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 374 (1-3):
  • [10] A SUBALGEBRA OF EXTA'' (Z2,Z2)
    ZACHARIOU, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (05) : 647 - +