Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties

被引:0
|
作者
Hernandez-Sanchez, M. [1 ]
Tapia-Labra, G. [1 ]
Mendez-Bermudez, J. A. [1 ,2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Honduras, Escuela Fis, Fac Ciencias, Tegucigalpa, Honduras
关键词
DENSITY-OF-STATES; INVERSE PARTICIPATION RATIO; EIGENVALUE DISTRIBUTION; CHARACTERISTIC VECTORS; STATISTICAL PROPERTIES; BORDERED MATRICES; LYAPUNOV SPECTRA; LEVEL STATISTICS; LOCALIZATION; ENSEMBLES;
D O I
10.1103/PhysRevE.110.044124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we introduce the non-Hermitian diluted banded random matrix (nHdBRM) ensemble as the set of N x N real nonsymmetric matrices whose entries are independent Gaussian random variables with zero mean and variance one if | i - j| < b and zero otherwise, moreover off-diagonal matrix elements within the bandwidth b are randomly set to zero such that the sparsity alpha is defined as the fraction of the N ( b - 1)/2 independent nonvanishing off-diagonal matrix elements. By means of a detailed numerical study we demonstrate that the eigenfunction and spectral properties of the nHdBRM ensemble scale with the parameter x = gamma [(b alpha)(2)/N](delta) , where gamma, delta similar to 1. Moreover, the normalized localization length beta of the eigenfunctions follows a simple scaling law: beta = x / (1 + x ). For comparison purposes, we also report eigenfunction and spectral properties of the Hermitian diluted banded random matrix ensemble.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [22] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [23] Spectral rigidity of non-Hermitian symmetric random matrices near the Anderson transition
    Huang, Yi
    Shklovskii, B., I
    PHYSICAL REVIEW B, 2020, 102 (06)
  • [24] A WHITENESS TEST BASED ON THE SPECTRAL MEASURE OF LARGE NON-HERMITIAN RANDOM MATRICES
    Bose, A.
    Hachem, W.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8768 - 8771
  • [25] Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples
    Nicholas Cook
    Walid Hachem
    Jamal Najim
    David Renfrew
    Journal of Theoretical Probability, 2022, 35 : 2343 - 2382
  • [26] Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples
    Cook, Nicholas
    Hachem, Walid
    Najim, Jamal
    Renfrew, David
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2343 - 2382
  • [27] NON-HERMITIAN OPERATORS AND EIGENFUNCTION EXPANSIONS
    IWATA, G
    PROGRESS OF THEORETICAL PHYSICS, 1951, 6 (02): : 216 - 226
  • [28] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [29] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [30] Spectral analysis of non-Hermitian matrices and directed graphs
    Gnang, Edinah K.
    Murphy, James M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 72 - 91