Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples

被引:2
|
作者
Cook, Nicholas [1 ]
Hachem, Walid [2 ]
Najim, Jamal [2 ]
Renfrew, David [3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Gustave Eiffel, ES1EE, CNRS, Lab Informat Gaspard Monge, 5 Blvd Descartes, F-77454 Champs Sur Marne Marne L, France
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13901 USA
基金
奥地利科学基金会;
关键词
Non-Hermitian random matrices; Deterministic equivalents; Limiting spectral distribution; Schwinger-Dyson equations; NONNEGATIVE MATRICES;
D O I
10.1007/s10959-021-01140-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For each n, let A(n) = (sigma(ij)) be an n x n deterministic matrix and let X-n = (X-ij) be an n x n random matrix with i.i.d. centered entries of unit variance. In the companion article (Cook et al. in Electron J Probab 23:Paper No. 110, 61, 2018), we considered the empirical spectral distribution mu(Y)(n) of the rescaled entry-wise product Y-n = 1/root n A(n) circle dot X-n = (1/root n sigma X-ij(ij)) and provided a deterministic sequence of probability measures mu(n) such that the difference mu(Y)(n) - mu(n) converges weakly in probability to the zero measure. A key feature in Cook et al. (2018) was to allow some of the entries sigma(ij) to vanish, provided that the standard deviation profiles A(n) satisfy a certain quantitative irreducibility property. In the present article, we provide more information on the sequence (mu(n)), described by a family of Master Equations. We consider these equations in important special cases such as sampled variance profiles sigma(2)(ij) = sigma(2) (i/n, j/n), where (x, y) bar right arrow sigma(2) (x, y) is a given function on [0, 1](2). Associated examples are provided where mu(Y)(n) converges to a genuine limit. We study mu(n)'s behavior at zero. As a consequence, we identify the profiles that yield the circular law. Finally, building upon recent results from Alt et al. (Ann Appl Probab 28(1):148-203, 2018; Ann Inst Henri Poincare Probab Stat 55(2):661-696, 2019), we prove that, except possibly at the origin, mu(n) admits a positive density on the centered disc of radius root rho(V-n), where V-n = (1/n sigma(2)(ij)) and rho(V-n) is its spectral radius.
引用
收藏
页码:2343 / 2382
页数:40
相关论文
共 50 条
  • [1] Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples
    Nicholas Cook
    Walid Hachem
    Jamal Najim
    David Renfrew
    Journal of Theoretical Probability, 2022, 35 : 2343 - 2382
  • [2] Non-Hermitian random matrices with a variance profile (I): deterministic equivalents and limiting ESDs
    Cook, Nicholas
    Hachem, Walid
    Najim, Jamal
    Renfrew, David
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [3] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    Journal of Statistical Physics, 2022, 187
  • [4] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Jana, Indrajit
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (02)
  • [5] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [6] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [7] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [8] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [9] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [10] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245