Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties

被引:0
|
作者
Hernandez-Sanchez, M. [1 ]
Tapia-Labra, G. [1 ]
Mendez-Bermudez, J. A. [1 ,2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Honduras, Escuela Fis, Fac Ciencias, Tegucigalpa, Honduras
关键词
DENSITY-OF-STATES; INVERSE PARTICIPATION RATIO; EIGENVALUE DISTRIBUTION; CHARACTERISTIC VECTORS; STATISTICAL PROPERTIES; BORDERED MATRICES; LYAPUNOV SPECTRA; LEVEL STATISTICS; LOCALIZATION; ENSEMBLES;
D O I
10.1103/PhysRevE.110.044124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we introduce the non-Hermitian diluted banded random matrix (nHdBRM) ensemble as the set of N x N real nonsymmetric matrices whose entries are independent Gaussian random variables with zero mean and variance one if | i - j| < b and zero otherwise, moreover off-diagonal matrix elements within the bandwidth b are randomly set to zero such that the sparsity alpha is defined as the fraction of the N ( b - 1)/2 independent nonvanishing off-diagonal matrix elements. By means of a detailed numerical study we demonstrate that the eigenfunction and spectral properties of the nHdBRM ensemble scale with the parameter x = gamma [(b alpha)(2)/N](delta) , where gamma, delta similar to 1. Moreover, the normalized localization length beta of the eigenfunctions follows a simple scaling law: beta = x / (1 + x ). For comparison purposes, we also report eigenfunction and spectral properties of the Hermitian diluted banded random matrix ensemble.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [32] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [33] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588
  • [34] Eigenvector correlations across the localization transition in non-Hermitian power-law banded random matrices
    Ghosh, Soumi
    Kulkarni, Manas
    Roy, Sthitadhi
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [35] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [36] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [37] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [38] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [39] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346
  • [40] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)