Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties

被引:0
|
作者
Hernandez-Sanchez, M. [1 ]
Tapia-Labra, G. [1 ]
Mendez-Bermudez, J. A. [1 ,2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Honduras, Escuela Fis, Fac Ciencias, Tegucigalpa, Honduras
关键词
DENSITY-OF-STATES; INVERSE PARTICIPATION RATIO; EIGENVALUE DISTRIBUTION; CHARACTERISTIC VECTORS; STATISTICAL PROPERTIES; BORDERED MATRICES; LYAPUNOV SPECTRA; LEVEL STATISTICS; LOCALIZATION; ENSEMBLES;
D O I
10.1103/PhysRevE.110.044124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we introduce the non-Hermitian diluted banded random matrix (nHdBRM) ensemble as the set of N x N real nonsymmetric matrices whose entries are independent Gaussian random variables with zero mean and variance one if | i - j| < b and zero otherwise, moreover off-diagonal matrix elements within the bandwidth b are randomly set to zero such that the sparsity alpha is defined as the fraction of the N ( b - 1)/2 independent nonvanishing off-diagonal matrix elements. By means of a detailed numerical study we demonstrate that the eigenfunction and spectral properties of the nHdBRM ensemble scale with the parameter x = gamma [(b alpha)(2)/N](delta) , where gamma, delta similar to 1. Moreover, the normalized localization length beta of the eigenfunctions follows a simple scaling law: beta = x / (1 + x ). For comparison purposes, we also report eigenfunction and spectral properties of the Hermitian diluted banded random matrix ensemble.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [42] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [43] SPECTRAL PORTRAIT FOR NON-HERMITIAN LARGE SPARSE MATRICES
    CARPRAUX, JF
    ERHEL, J
    SADKANE, M
    COMPUTING, 1994, 53 (3-4) : 301 - 310
  • [44] Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk
    G. M. Cicuta
    M. Contedini
    L. Molinari
    Journal of Statistical Physics, 2000, 98 : 685 - 699
  • [45] Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk
    Cicuta, GM
    Contedini, M
    Molinari, L
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 685 - 699
  • [46] Spectral statistics of non-Hermitian random matrix ensembles
    Chen, Ryan C.
    Kim, Yujin H.
    Lichtman, Jared D.
    Miller, Steven J.
    Sweitzer, Shannon
    Winsor, Eric
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (02)
  • [47] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [48] Rate of convergence for products of independent non-Hermitian random matrices
    Jalowy, Jonas
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [49] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [50] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)